
Research Statement

Ashish Mishra

Building reliable software has been a classic goal of Computer Science. Dijkstra, in his famous
lecture- “On the reliability of programs” makes the following four major predictions about
how he foresaw what the evolution (should be) of software: (1) programs should be correct;
(2) debugging is inadequate and we must prove the correctness of the programs; (3) we must
tailor programs to proof requirements; and, (4) programming will become more and more math-
ematical. Like any well-reasoned prediction, half a century later, some of these have become
true while others have not. On the one hand, the limitations of debugging and the necessity
of formal verification is well understood (although they may still need to be better adopted) in
principle in Computer Science. Consequently, program verification techniques have made re-
markable improvements, while software debugging and testing have also gained tremendously
from these improvements. On the other hand, the prediction of programming moving towards
becoming a more mathematical discipline has proven to be conclusively false. Instead, modern
programming languages are less mathematical and more high-level (English-like), and pro-
gramming as a discipline keeps moving towards being less formal and more accessible to the
masses.
These goals, predictions and their rebuttals thereafter, very interestingly summarize my current
research and its future directions. The most basic premise of my research being; Can we make
programs safe and reliable using formal techniques thereby achieving the long dreamt re-
liability goals, while making programming as a discipline more democratic and accessible
to the masses?
My current and future research is a step towards answering this question in the affirmative.
More concretely, my research is at the junction of programming languages, program verifi-
cation, software engineering, and program synthesis. I apply the techniques and tools of the
former two to solve problems that arise in the latter two with a goal to make programs reliable
while also making programming more democratic and accessible to everyone.

To concretely achieve the above-mentioned goals, my research spans two main directions;
along one direction, I use the formal method tools, specifically program analyses, to strengthen
the reliability of available code, particularly in dynamic languages, against the standard no-
tions of reliability.

1 Program analysis and transformation for dynamic languages

Dynamic programming languages like JavaScript, Ruby, Python, etc., have truly popularized
programming. This can be attributed to their looser typing and static disciplines, which allow
easy interfacing of programs together. This in turn, leads to ease of writing programs and
higher developer productivity by allowing code reuse and faster development. The consequence
is their immense popularity and an ever-growing ecosystem of libraries and packages. For
instance, the node package manager (npm) for JS has more than 1.7 million packages (modules
in npm terminology). However, this ease of programming comes at a cost; installing a npm
package typically installs all its transitive dependencies with all their functionality. Generally,

1



only a fraction of these functionalities is needed. This causes an unwanted increase in code
size, and a problem of accumulating code that in practice is never invoked. This is known as
code/software “bloat”. Software bloat leads to multiple issues like higher-loading times in the
browsers and an increased attack surface, making these programs additionally prone to security
vulnerabilities.
Eliminating this unused functionality from distributions is highly desirable. The standard
approaches for software-bloat removal requires a sound reachability analysis to find unused
code [1]. Unfortunately, this is infeasible in JS due to JavaScript’s extreme dynamicity, making
standard approaches futile. I present a fully automatic technique in a tool called Stubbifier [2]
that identifies unused code by constructing hybrid (static+dynamic) call graphs from the appli-
cation’s tests and replacing code deemed unreachable with either file- or function-level stubs.
These stubs allow lazily loading those functionalities which are unsoundly identified as unused
by the analyses and may, in fact, be reachable. They fetch and execute the original code on-
demand to preserve the application’s behavior. The technique also provides an optional guarded
execution mode to guard applications against injection vulnerabilities in untested code that re-
sulted from stub expansion. Stubbifier reduced application size by 56% on average while in-
curring only minor performance overhead. The evaluation also shows that Stubbifier’s guarded
execution mode is capable of preventing several known injection vulnerabilities that are mani-
fested in stubbed-out code.

Along the other direction, I use formal verification approaches to aid programmers in writ-
ing correct-by-construction programs with verified safety guarantees. Interestingly, I take two
related but distinct approaches to achieve this; the central intuition in both is to allow the
programmer to convey her intent. Once this intent is specified, formal method techniques can
either verify that a given piece of code agrees to the intent (the verification approach); or, even
more preferably, we can translate these intents to programs (the program synthesis approach).
I discuss one of my works along each of these forks.

2 Automatic safety verification for effectful, higher-order programs

Automated verification of programs with higher-order functions (functions that take other func-
tions as argument and return functions as a result) and effectful operations (operations that have
side-effects like reading or writing to a file) is challenging as tracking the interaction between
different functions, and the effect of those interactions on program’s state is difficult to reason.
Given that such higher-order effectful programs are increasingly present in critical domains
like aerospace systems, medical devices and cybersecurity systems etc. an efficient verification
methodology for this class of programs is imperative.
A particularly interesting instance of such programs is that of “Parsers” which are transformers
over data, formatting unstructured data to a structured one. A very popular technique for writ-
ing these transformers is using Parser Combinators [3] based on the idea of combining small,
reusable parsers (called “combinators”) to build up more complex parsers. They make it easier
to build parsers for complex data formats, as the combinators can be composed in a flexible and
modular way making it easier to maintain and modify the parser as the format evolves. Conse-
quently, this style of parser construction has been adopted in many domains, a fact exemplified
by their support in many widely-used languages like Haskell, Scala, OCaml, Java, etc.

2



Unfortunately, these programs are sprinkled with both higher-order functions, as well as side
effects and consequently automatically verifying these programs is challenging and not well-
explored. To address this, I designed an OCaml DSL Morpheus [4] that allows compositional
construction of data-dependent parsers using a rich set of primitive parsing combinators. The
novelty of Morpheus is an expressive specification language and a refinement type system for
describing and automatically verifying safety properties relevant to parsing applications.
Morpheus imposes modest constraints on the host language capabilities available to parser
combinator programs; these constraints enable automated reasoning and verification, without
comprising the ability to specify parsers with rich effectful, data-dependent safety properties.
I justify this design through a detailed evaluation study over a range of complex real- world
parser application.
Furthermore, Morpheus is perfectly positioned at a sweet spot in terms of the expressiveness
and tractability of its verification. This makes it useful to write (and verify) programs from
several other domains besides parsers. One such domain is of networking programs where
researchers are independently building similar refinement types for languages like P4 [5]. An-
other good example is the domain of verified database applications which combine high-level
language features which modify underlying database states through transactions. In future, I
plan to extend Morpheus to these domains. Thus, Morphues conclusively takes us a step closer
to the long-term goal of writing safer effectful programs.

User intent, which allows a verification toolchain in Morpheus can also be used to solve the
more challenging dual problem, i.e. automatically synthesizing a program satisfying a pro-
grammer’s intent. This will not only make writing programs safer by generating correct-by-
construction programs but will also make programming more accessible, thus contributing
towards both the major philosophical goals of my research.

3 Specification-guided synthesis for effectful programs

component-based program synthesis is a technique for intelligently composing a set of given
high-level components or libraries to generate programs for a given user specification automat-
ically. A key advantage of Component-based synthesis is that it allows developers to focus on
the high-level design of the program rather than the low-level implementation details. This can
make it easier to write and maintain complex programs. One central challenge in component-
bases synthesis (and program synthesis in general) is how to search for a correct program in
a combinatorial space of possible programs which can be constructed using the libraries. The
problem is further exacerbated when libraries have side effects like mutable states as the search
space becomes a cross-product of programs and heap states. An attempt to tackle this challenge
has led to substantial research efforts towards component-based synthesis [6,7]. Unfortunately,
all these efforts are either agnostic about effectful semantics of libraries [6] or have a very
coarse-grained notion of effects [7]. Consequently, they either fail to scale to effectful/stateful
settings and/or synthesize unsound programs when applied to component libraries with side
effects.

In Cobalt [8] I designed a specification-guided component-based synthesis technique for
effectful libraries. The key insight is that library specifications can aid in efficient program

3



search. The synthesis procedure uses Hoare-style pre- and post-conditions to express fine-
grained effects of potential library component candidates and to drive a bi-directional synthesis
search strategy. To further improve efficiency and scalability, Cobalt integrates a conflict-driven
learning procedure into the synthesis algorithm that provides a semantic characterization of
previously encountered unsuccessful search paths used to prune possible candidates’ space as
synthesis proceeds. I also empirically show that the synthesis approach is generic and can
be applied to libraries from different domains like imperative data-structure libraries, database
transactions, parsers, etc.
Cobalt provides a generic strategy for component-based synthesis over libraries manipulating
states; one interesting direction for its extension is to the context of distributed systems and their
safety properties. For instance, one can define the semantics of distributed database transactions
in a rely-guarantee like specifications [9] and couple these with global database invariants to
synthesize correct distributed database programs in a similar fashion as we do this for their
non-distributed counterparts in Cobalt’s evaluation.

Principled proof-search-guided component-based synthesis. In Cobalt, I extend the state-
of-the-art for effectful program synthesis which henceforth lacked efficient enumeration/search
in the space of valid program terms and thus required very precise logical specifications. The
CDCL search procedure in Cobalt utilizes a specific property of program terms viz., the equiv-
alence of the programs modulo the failing terms for a given synthesis goal. Although it greatly
improves the enumeration, internally, we are required to perform multiple heuristic-based opti-
mizations in the search/enumeration procedure implicitly to dissuade it from exploring equiva-
lent paths multiple times.
This is true for most of the program synthesis approaches which have similar heuristic-based
enumeration optimizations. Unfortunately, I show that these heuristics are both ineffective and
lead to incompleteness in the synthesis procedure. In one of my ongoing works [10], I solve
this problem in a more principled way. The key idea is to borrow from the developments in two
related fields: proof-theory which tackles efficient proof-search and inductive-synthesis which
tackles efficient program enumeration in combinatorial search space.
I introduce a novel data structure called Hyper Proof Tree Automaton, which reifies, in a com-
pact way, the large space of proof terms generated during the synthesis process and equiva-
lences between these terms. Consequently, the optimizations on the proof-search process are
introduced as operations on this data structure. This, coupled with a proof (equivalently a pro-
gram) extraction algorithm, allows a principled approach for proof-strategy-guided synthesis
procedure.

4 Future research directions

The works discussed above make a significant contribution towards the goals of reliability and
ease of programming for modern software systems. However, with ever-evolving domains
of software, like the modern machine learning and artificial intelligence (ML/AI) systems and
modern control system software as in Robotics, these works have only scratched the surface.
A long-term vision for my research is to build on these initial developments to tackle the chal-
lenges these evolutions raise while utilizing the opportunities and newer avenues they create.
A few concrete examples of some of these open challenges are; Program synthesis is still in
its nascent state and requires fundamental improvements to make it applicable to real-world

4



problems. Further, the techniques (both verification and synthesis) I have designed can also
be applied to answer important reliability questions in (AI/ML) software; at the same time, the
developments in (AI/ML) world can help improve both program verification and synthesis.
Finally, program syntheses can have a significant impact when applied to novel domains like
robotics and cyber-physical systems. Following, I list some of these imminent future directions.

Type-guided synthesis for learning abstractions/libraries: The user intent (the logical spec-
ifications in Cobalt and Morpheus) is a part of the input to a program synthesizer; typically, a
synthesis procedure also requires either a program-sketch, a domain-specific language or, as
in component-based synthesis, a library of components. This is because the enumeration in
program synthesis approaches faces a significant challenge: How to explore the humongous
program space efficiently? A standard approach is to restrict this space; one way this space is
restricted is by providing a suitable Structure Hypothesis, which defines some structure of the
allowed programs. This hypothesis is commonly provided as a program sketch, a Domain Spe-
cific Language(DSL) or a set of libraries (as in Cobalt and other component-based syntheses).
Unfortunately, providing these hypotheses is non-trivial for the programmer, and this hinders a
broader adoption of these program synthesis approaches.

This leads to an interesting research question; Can we learn these Structure Hypothesis au-
tomatically given a corpus of programs? This is commonly called Learning Abstractions or
Learning Libraries. Interestingly, the techniques and solutions used in Program Synthesis can
also help learn these structure hypotheses given a corpus of code. The core challenge in these
problems is to find common abstraction patterns in the large corpus in an efficient way. For-
tunately, just like we use specifications (e.g. types) to guide the synthesis process by picking
programs of correct shape and discarding incorrect ones in Cobalt, these specifications can also
guide the picking of similar shapes across the corpus.
Further, types (both basic and richer types like Refinement Types) can filter many programs with
overlapping structures but inconsistent types, thus more efficiently guiding the matching pro-
cess. I plan to apply these type-guided search techniques to the problem of library/abstraction
learning in one of my future works.

Neurosymbolic deductive program synthesis: In each of the works I hitherto discussed, I
use logical formulae to capture the programmer’s intent which is then deductively refined to
programs. This flavor of program synthesis is called deductive program synthesis. In practice,
the user intent can also be captured in other less formal and less precise ways, e.g. input/out-
put examples. This flavor of program synthesis requires inductive generalisation from these
input/output examples and is thus called inductive synthesis.
Since program induction is considered one of the fundamental problems in ML/AI, recent years
have seen a growth in many neural architectures (and other ML approaches) applied to the pro-
gram synthesis problem, particulaly inductive program synthesis.
For instance, there are approaches [11] that train a machine learning model (typically a deep
neural network) to directly predict a complete program from the given specifications (typically
i/o examples). However, these purely neural (or ML) based systems have some key limitations:
for instance, often program synthesis tasks are hard for deep networks which have no symbolic
component. Further, it is challenging to provide any guarantees for the synthesized programs
due to the black-box nature of these neural networks.

5



These observations have led to recent attempts at combining the symbolic program synthesis
with machine learning-based approaches leading to the development of the new popular do-
main of Neurosymbolic Program Synthesis or Neurosymbolic Programming. The idea is that
together these approaches will be able to tackle challenges which are infeasible for either alone.
For instance, Deepcoder [12] uses deep learning to guide an enumerative search in inductive-
synthesis by training a model to predict the probability of each component in the source code.
Similarly, a recent paper [13] uses the RL system to guide the search process based on the
reward function defined using the failing terms.
Combining neural techniques with deductive program synthesis is yet an open and challeng-
ing problem; particularly challenging is how to use machine learning approaches to guide the
synthesis of programs with side effects, as in Cobalt. Given that such synthesis problems are
equivalent to the proof-searches, I believe advancements in the applications of ML techniques
in the proof-search community can aid in efficient exploration in the search space in such syn-
thesis problems. In future, I plan to work closely with ML researchers to tackle such problems.

Program synthesis in novel domains like Robotics: Hitherto, I have discussed general pro-
gramming domains for program synthesis. Unfortunately, solving the general program syn-
thesis problem is hard, consequently, many program synthesis approaches focus on a much
smaller domain of programs. For instance, FlashFill and related works [14] focus on spread-
sheet programs where they use domain knowledge to improve the effectiveness of the synthesis
procedure. I am interested in applying program synthesis to many new unexplored domains.
In certain domains, however, like Robotics, programming traditionally involves both designing
the robot structure (the parts of the robot) as well as designing the best control policy (sequence
of actions) for the design and a given user objective. Consequently, the space of designs (the
structure + the robot control policy) is intractably large. Automating correct robot design given
real-world objectives is thus both a challenging and important research problem.
Currently, there are limited tools for automatically exploring this search space. One common
approach is graph-heuristic based, using Graph Neural Networks [15], which accelerates the
exploration by prioritizing certain designs over others. However, these approaches have no way
of guiding the design synthesis against given real-world logical specifications.
Combining these neural-guided approaches with logical specification-guided deductive synthe-
sis (like in Cobalt) can be beneficial in tackling these limitations. Again using the user intent,
one possible approach is to extend Cobalt to accept temporal logic formulae (like LTL/CTL
formulae) as robot specifications (along with the grammar for its structure) and use these spec-
ifications to learn a set of allowed trajectories for the robot given user specifications using the
advances in robot path planning. Following this, we can use these trajectories to aid the syn-
thesis process by defining the synthesis as a reinforcement learning problem penalizing those
designs which are less likely to follow these trajectories while boosting others.
I plan to work closely with researchers in the robotics domain in the future to apply these ideas
in program synthesis to tackle some of these problems.

References

[1] F. Tip, P. F. Sweeney, C. Laffra, A. Eisma, and D. Streeter, “Practical extraction
techniques for java,” ACM Trans. Program. Lang. Syst., vol. 24, no. 6, p. 625–666, nov
2002. [Online]. Available: https://doi.org/10.1145/586088.586090

6

https://doi.org/10.1145/586088.586090


[2] A. Turcotte, E. Arteca, A. Mishra, S. Alimadadi, and F. Tip, “Stubbifier: Debloating
dynamic server-side javascript applications,” Empirical Softw. Engg., vol. 27, no. 7, sep
2022. [Online]. Available: https://doi.org/10.1007/s10664-022-10195-6

[3] G. Hutton and E. Meijer, “Monadic parser combinators,” 1996.

[4] A. Mishra and S. Jagannathan, “Morpheus: Automated safety verification of data-
dependent parser combinator program,” in Under Submission in ECOOP, 2023.

[5] M. Eichholz, E. H. Campbell, M. Krebs, N. Foster, and M. Mezini, “Dependently-typed
data plane programming,” Proc. ACM Program. Lang., vol. 6, no. POPL, jan 2022.
[Online]. Available: https://doi.org/10.1145/3498701

[6] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps, “Component-based
synthesis for complex apis,” in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL 2017. New York, NY,
USA: Association for Computing Machinery, 2017, p. 599–612. [Online]. Available:
https://doi.org/10.1145/3009837.3009851

[7] S. N. Guria, J. S. Foster, and D. Van Horn, “Rbsyn: Type- and effect-guided program
synthesis,” in Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, ser. PLDI 2021. New York, NY,
USA: Association for Computing Machinery, 2021, p. 344–358. [Online]. Available:
https://doi.org/10.1145/3453483.3454048

[8] A. Mishra and S. Jagannathan, “Specification-guided component-based synthesis from
effectful libraries,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA2, oct 2022.
[Online]. Available: https://doi.org/10.1145/3563310

[9] G. Kaki, K. Nagar, M. Najafzadeh, and S. Jagannathan, “Alone together: Compositional
reasoning and inference for weak isolation,” Proc. ACM Program. Lang., vol. 2, no.
POPL, dec 2017. [Online]. Available: https://doi.org/10.1145/3158115

[10] A. Mishra and S. Jagannathan, “Prudent: A principled proof-serach-guided component-
based synthesis,” in Under Preparation, 2023.

[11] A. Neelakantan, Q. V. Le, M. Abadi, A. McCallum, and D. Amodei, “Learning a natural
language interface with neural programmer,” in International Conference on Learning
Representations, 2017. [Online]. Available: https://openreview.net/forum?id=ry2YOrcge

[12] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow, “Deep-
coder: Learning to write programs,” in Proceedings of ICLR’17, March
2017. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
deepcoder-learning-write-programs/

[13] Y. Chen, C. Wang, O. Bastani, I. Dillig, and Y. Feng, “Program synthesis using
deduction-guided reinforcement learning,” in Computer Aided Verification: 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020,
Proceedings, Part II. Berlin, Heidelberg: Springer-Verlag, 2020, p. 587–610. [Online].
Available: https://doi.org/10.1007/978-3-030-53291-8 30

7

https://doi.org/10.1007/s10664-022-10195-6
https://doi.org/10.1145/3498701
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1145/3563310
https://doi.org/10.1145/3158115
https://openreview.net/forum?id=ry2YOrcge
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
https://doi.org/10.1007/978-3-030-53291-8_30


[14] S. Gulwani, “Automating string processing in spreadsheets using input-output
examples,” in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 317–330. [Online]. Available:
https://doi.org/10.1145/1926385.1926423

[15] A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes, A. Spielberg, D. Rus, and W. Matusik,
“Robogrammar: Graph grammar for terrain-optimized robot design,” ACM Trans. Graph.,
vol. 39, no. 6, nov 2020. [Online]. Available: https://doi.org/10.1145/3414685.3417831

8

https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/3414685.3417831

	Program analysis and transformation for dynamic languages
	Automatic safety verification for effectful, higher-order programs
	Specification-guided synthesis for effectful programs
	Future research directions

