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Abstract

Statically verifying behavioral properties of programs is an important research problem. An

efficient solution to this problem will have visible effects over multiple domains, ranging from

program development, program debugging, program correction and verification, etc. Type

systems are the most prevalently used static, light-weight verification systems for verifying

certain properties of programs. Unfortunately, simple types are inadequate at verifying many

behavioral/dynamic properties of programs. Typestates can tame this inadequacy of simple

types by associating each type in a programming language with a state information. However,

there are two major challenges in statically analyzing and verifying typestate properties over

programs.

The first challenge may be attributed to “increasing complexity of programs”. The original

work on typestates can only verify/analyze a typestate property over very simple programs

which lacked dynamic memory allocation or aliasing. Subsequently, the following works on

typestates extended and improvised the analysis over programs with aliasing and heaps. How-

ever, the state-of-the-art static typestate analysis works still cannot handle formidably rich

programming features like asynchrony, library calls and callbacks, concurrency, etc. The sec-

ond challenge may be attributed to “complexity of the property being verified”. The original

and the current notion of typestates can only verify a property definable through a finite-state

abstraction. This makes the state-of-the-art typestate analysis and verification works inade-

quate to verify useful but richer non-regular program properties. For example, using classical

typestates we can verify a property like, “pop be called on a stack only after a push operation”,

but we cannot verify a non-regular program property like, “number of push operations should

be at least equal to the number of pop operations”. Currently, these behavioral properties are

mostly verified/enforced by programmers at runtime via explicit checks. Unfortunately, these

runtime checks are costly, error-prone, and lay an extra burden on the programmer.

In this thesis we take small steps towards tackling both these challenges. Addressing com-

plex program features, we present an asynchrony-aware static analysis, taking Android applica-

tions as our use case. Android applications have convoluted control flow, and complex features,
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Abstract

like asynchronous inter-component communications, library callbacks, Android enforced control

flows (called as lifecycles), resource XMLs, which define and register event-handlers etc. Un-

fortunately, none of the available static analysis works for Android soundly captures all these

features. We provide a formal semantics for Android asynchronous control flow, capturing

these features. We use this semantics to introduce an intermediate program representation for

Android applications, called the Android Inter-Component Control Flow Graph (AICCFG),

and develop an asynchrony-aware interprocedural static analysis framework for Android ap-

plications. We use this framework to develop a static typestate analysis to capture Android

resource API usage protocol violations. We present a set of benchmark applications for dif-

ferent resource types, and empirically compare our typestate analysis with the state-of-the-art

synchronous static analyses for Android applications.

Addressing the challenges associated with increasing complexity of properties, we present an

expressive notion of typestates called, Parameterized typestates (p-typestates). p-typestates,

associate an extra Pressburger definable property along with states of regular typestates. This

allows p-typestates to express many useful non-regular properties. We formally define this

notion of p-typestates, and a p-typestate property automaton, to represent a p-typestate prop-

erty. We present a dependent type system for these parameterized typestates and present

a simple typestate-oriented language incorporating p-typestates. Further, typechecking such

rich p-typestate properties require a programmer to provide invariants for loops and recursive

structures. Unfortunately, providing these invariants is a non-trivial task even for expert pro-

grammers. To solve this problem, we present a simple and novel loop invariant calculation

approach for Pressburger definable systems. We encode a number of real-world programs in

our dependently-typed language and use p-typestates type system, and loop-invariant calcula-

tion to verify several rich properties which are not amenable to regular typestate analysis and

verification.

Finally we discuss several possible extensions of our thesis along both these directions.
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Chapter 1

Introduction

The growth of programming languages in any programming paradigm or field is guided by

numerous factors and is mostly followed by a phase of development of theories, tools, techniques

and algorithms for reasoning about the programs written in these language. Consider the

case of Object-oriented languages. The first language to introduce the concept of Objects was

Simula. The initial version of the language Simula-1 was introduced in 1966. The language was

created to aid simulations, which typically modeled real world systems. Many of these systems

contained hundreds and thousands of interacting parts. To model these systems and their

interaction, Simula introduced the concept of Modules based not on procedures but on actual

physical objects. Simula was followed by Smalltalk, which is considered the first true Object-

oriented programming language. Smalltalk introduced many other new concepts like browsers,

windows, menus and other GUI components which became major propelling factor for the

object-oriented programming languages. Although Smalltalk gave Object-oriented development

a certain amount of legitimacy in the marketplace, it took C++ to bring Object-oriented

development what it really needed, widespread acceptance in the marketplace. The success of

C++ gave way to the origins of Java in around 1992, a language to tap the growing market

of consumer electronics, having Object-oriented principles at its core but only having those

features of C++ which were “worthwhile”. As these language and the paradigm matured and as

their target fields expanded, they became bulkier and messier, with addition of newer language

features, libraries, tools, frameworks, etc. Unfortunately, as a language and its ecosystem

become more complex, it becomes harder to comprehend and debug the programs written

in it and higher is the risk of developing erroneous programs with unwanted behaviors and

functionalities. This may open up numerous vulnerabilities and attack surfaces which are

potentially exploitable. Thus, parallel to their growth, there is also a growth of analysis tools,

formal methods and verification techniques for these languages. The need to reason about
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programs has been a guiding force for research in the field of programming languages, program

analysis and program verification, program comprehension, etc. This has lead to great efforts

towards developing various approaches for reasoning and verifying structural(static properties

related with the structure) and behavioral(dynamic properties related with dynamic state)

properties of programs.

Type systems offer one such approach which is used mainly for reasoning about structural

properties of programs. Types classify data based on the valid operations over it. This defines

the set of valid operations over data classes, checks if some operation or a sequence of operations

is invalid and in the best case guarantees the absence of any unwanted/incorrect behavior.

Although types and type systems are good at modeling and verifying properties related to

a fixed structure of data, they are not efficient mechanisms for describing and reasoning about

dynamic aspects(behavioral properties) of programs. For instance, types can efficiently capture

the operations defined over a datum, but cannot describe a stateful property describing a subset

of these operations valid in a given state of the datum.

These dynamic aspects of programs and data are captured via a group of systems which

fall under the purview or Behavioral types [61]. The most common example of systems un-

der behavioral types include, session types and typestates. Typestates defines state-dependent

availability or unavailability of operations, and is effective at modeling behavioral properties of

programs, particularly, modeling and verifying protocols associated with data and programs.

Although typestates are well understood, they have been applied to programs with limited

features (simple programs with references) and regular properties (finite abstraction proper-

ties). This thesis makes theoretical and practical contributions towards extending typestates

to richer properties and programs with complex features. This chapter, introduces the thesis

and discusses the major contributions of the thesis.

1.1 Protocols and Other Typestate Properties

Protocols are ubiquitous. They act as an explicit or implicit contract between components of

a software system or across systems. These contracts must be respected by all the software

components that are party to the protocol. Two examples are a producer-consumer related

protocol between two components acting as server and client respectively, and a communication

protocol between the sender and the receiver. Often these protocols need not be a multi-party

contract. They may be a set of rules associated with a data structure or an object, such as,

“no use of a variable before its definition, or, “no reading from a closed File object”. Violating

these protocols or contracts could have effects ranging from being totally benign to semantically

invalid programs, or in many cases opening up exploitable vulnerabilities in a program. For
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example, “violating array access bounds” might lead to buffer-overflow vulnerabilities which

might act as the root cause of numerous attacks.

Many of these properties and protocols cannot be adequately captured using normal types

available in programming languages. This can be attributed to the inherent non-transient

property of types, i.e., the type associated with a datum remains constant during its life. This

makes these types inappropriate to capture transient/dynamic behavior of data. For instance,

a simple File type can capture set of operations defined on a File like read, write, open, etc.,

but it cannot capture a dynamic property, which allows/disallows a certain subset of these

operations based on the state of a File, or it cannot capture a property which is a function of

the size of a File.

A Typestate [115] is programming concept useful for enforcing such protocols and properties

over data and programs. They form a component of the general Behavioral Types [61] capturing

the dynamic or behavioral properties of data as compared to regular types which capture the

static structural properties of data. A classic example of typestates is a FileManager which

allows a File object to have a set of operations defined over it, viz., open, close, read and write. A

subset of these operations is valid on a File object based on its current state. Figure 1.1, shows a

finite automaton representing the valid operations in open and closed states of a File object and

pre- and postconditions for each method. Typestates are good at enforcing properties over states

and state transformations for data or program. This makes them particularly useful to check

or enforce interesting properties over imperative programs, which are basically transformers or

functions over the state of data. These properties can be checked or enforced either statically or

dynamically thereby making software reliable and robust by early elimination of many semantic

errors in programs.

Many of the important rich safety properties are not definable using regular typestates. For

instance, a property defined over a Stack as “ the number of push operations over a stack is

always greater than or equal to the number of pop operations over it”. This property can be

defined over a Counter Automaton but not using regular finite state machines. Fortunately,

these properties can be verified using dependent types and can be statically typechecked by

restricting the parameters of the dependent types to Presburger arithmetic formulas. Similarly,

there may be a different logical family for other classes of properties which provides required

expressiveness to type systems while still balancing on the decidability of typechecking and

the amount of annotation required. A portion of this thesis discusses this limitation of regular

typestates in detail and provides a generalized notion of typestates providing an adequate

balance between expressiveness and decidability of typechecking.
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Figure 1.1: Typestate property for FileManager

1.2 Typestate Analysis and Verification

The problem of analyzing or enforcing a typestate property is termed as typestate analysis. The

property could be enforced either statically or dynamically. There are various approaches in

literature to verify and enforce typestate properties. This is achieved either using a static/dy-

namic program analysis, which analyzes the program to check for possible typestate violations

or proves their absence or using a more language-based approach where typestates are inte-

grated as a language feature. These languages are called typestate-oriented languages. In this

thesis, we make theoretical and practical contributions to both these approaches.

In the absence of the above mentioned typestate analysis approaches, protocols and other

typestate properties are generally specified as class documents or other documentation associ-

ated with code. These documentations contain an informal “finite state machine” defining the

set of valid operations/methods in each state of the data/object. The programmer then needs

to enforce this property at runtime. This ad-hoc approach of dynamically enforcing typestate

properties is error prone and may lead to typestate violations. Debugging these programs is

hard since the property being enforced is not a part of the program, thereby making it hard to

comprehend the error. Further, the error generated is separated from the source of error, both

in terms of space and time.

Static typestate analyses [53, 115, 82] can help capture many semantic or behavioral bugs

in a program early in the development cycle. Although efficient, various complex features of

real-world programs make static typestate analysis a hard problem. Most notorious of these

features are (1) aliasing in a language with dynamic memory support, and (2) complex control

and data flow in a program. Aliasing makes it hard to precisely track a typestate transformation

over a data with various active aliases, while complex control flow makes it hard to choose the

precise transition of a typestate automata.

Dynamic analysis approaches, like runtime monitoring [74] overcome these challenges by

reducing typestate property checking to runtime checks. For example, the state of a File in

the FileManager example above may be explicitly checked via a non-null value of a field and
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updating this field appropriately in close and open methods. Although easier to program, these

runtime checks are extremely costly for a non-trivial typestate property over a rich program.

Inefficient checking can cause both runtime penalties and further make the program hard to

be comprehended and debugged. Many of the typestate analysis tools and frameworks take a

hybrid approach for typestate analysis. These works are discussed in detail in the chapter on

Related Work(Chapter 3).

Most typestate analysis approaches enforce typestate properties via- (1) a static/dynamic

program analysis over the program [53, 20], or (2) a disciplined use of member variables and

fields. These approaches have been efficiently used to codify and check many sophisticated

state-dependent properties of object-oriented programs. It has been used, for instance, to

verify object invariants in .NET [82], to verify that Java programs adhere to object proto-

cols [53, 18, 20], and to check that groups of objects collaborate with each other according to

an interaction specification [95, 66], etc. There is another line of work in typestate analyses

which integrates typestates in programming languages as first class members. These languages

are called typestate-oriented programming languages [9, 31]. They allow expressing typestate

abstractions and properties directly in the programs which may then be enforced statically or

dynamically.

1.3 Objectives of this Research

The problem of typestate analysis of a property over a given program is both useful and chal-

lenging as argued in the earlier sections. These challenges arise either due to the richness of

the property being analyzed or due to the complexity of the input program. Figure 1.2 plots

these challenges along two dimensions. The x-axis shows an increasing complexity of prop-

erty (φ) being analyzed, while the y-axis shows an increasing complexity of program (P ) being

analyzed for φ. The original typestate work due to Strom and Yemini [115] (point(1) on the

plot), presented a typestate analysis for regular typestate properties over a simple programming

language where all the complex features like aliases were abstracted away. Although simple to

implement, this approach cannot handle real programs from an imperative language like Java

or C++. A much more pragmatic typestate analysis should allow more complex programming

language features like references, heap allocations and aliasing. Most of the state-of-the-art

static typestate analyses belong to this category, shown by point (2) on the plot. Our objective

in this thesis is to expand the envelope of typestate analyses along both these axes.

• Along the axis of the complexity of Programs, the first part of the thesis provides a static

typestate analysis for Android applications (point(3) on the plot). These applications
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are imperative programs with intricate control flow properties like, asynchronous call and

callback handlers, event-handlers, Android framework enforced control and data flows,

etc. A sound and practically precise static analysis over these applications require a

correct model and semantics of these program features. These features are not unique to

Android and are shared by many other platforms like iOS, Microsoft Windows mobile OS

and programming models and frameworks like browser applications, etc.

• Along the other axis is the richness of properties being verified. The second part of the

thesis provides a generalized notion of Presburger definable parameterized typestates, a

core-language with a dependent type system to statically enforce these typestates (point(4)

on the plot). This allows us to define many non-regular program properties of interest

which are untamed by known typestate works.

There are scopes for improvements along both the axes. For example, one of the possible

improvements is to extend the Presburger definable parameterized typestates, and the under-

lying core language and typestate system with complex language features like asynchrony and

concurrency (point(5) on the plot). This will allow us to model session types [120] and related

properties using parameterized typestates. Along the other direction, it might be interesting

to look beyond Presburger definable typestate properties(point(6) and point(7) on the plot),

thereby giving a much expressive typestate properties verification. We leave these as possible

future extensions.

Besides these axes, automatic inductive typechecking of p-typestate properties and auto-

matic verification of other rich verification systems usually requires a programmer to annotate

loop invariants. Unfortunately, this is a challenging task even for an experienced programmer.

To placate this burden from the programmer, we present a novel loop invariant calculation

approach using loop acceleration technique for a Presburger definable transition system.

Next, we briefly introduce our contribution to each of these works along the two axes and

our loop invariant calculation approach:

1.3.1 Complexity of the Programs

In practice, typestates define a valid sequence of operations on data with mutable states and

pre-requisites on the state of the data for a method call to be valid. Thus, analyzing types-

tates [53, 82] requires a sound capture of the sequence of operations and state of data. Such

flow-sensitive analyses that precisely captures the sequence of operations require correct cap-

turing of program’s control flow. Flow sensitivity is simple to achieve in sequential programs

with procedures and there is a rich body of research on this [110, 28], but it is harder to achieve
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Figure 1.2: Our contributions against the challenges in typestate analyses.

for programs with richer control flow structures like asynchronous calls, callbacks, concurrency,

etc. This, in turn, makes a sound typestate analysis for such programs a hard problem. More-

over, these programs and programming models are increasingly becoming popular with the

rise of asynchronous, event-based programming prevalent in mobile systems like Android, iOS,

etc. Further, these systems have a rich set of resources and protocols associated with them and

checking the correctness of these protocols and their usage is important to find errors which oth-

erwise might cause program failures and open security vulnerabilities in these programs. Since

these protocols and their usage are classic examples of typestates, extending typestate analyses

to such richer programs with complex features is an important research problem. Programs

like Android applications have complex control flow semantics due to programming features

like asynchrony, concurrency, distributed control flow and other Android framework induced

control flow semantics. Unfortunately, most static analysis works on Android applications do
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not soundly model this semantics and focus merely on extending the known static analysis

techniques to Android applications. For instance, they treat asynchronous calls and communi-

cations as regular synchronous calls. These works further miss many of the semantic features of

Android induced control flow. This practically, beats the purpose of static analysis approach,

leaving it ineffective in proving the absence of errors. Thus the complexity of the programs

being analyzed is a major challenge to efficient and precise typestate analysis.

To tackle these challenges, we present an asynchrony-aware static analysis for Android

applications and introduce a program representation for Android applications which correctly

models asynchrony and other framework induced control flow semantics of these programs

(for single threaded non-preemptive semantics). This intermediate representation which we

name Android Inter Component Control Flow Graph (AICCFG), correctly models the Android

asynchronous Inter Component Communicationn and other control flow semantics for single

threaded Android applications with non-preemptive method callbacks. We also present this

semantics formally and discuss how AICCFG captures this semantics. This aids in developing

an asynchrony-aware static analysis over such single threaded Android applications. Android

applications use a rich set of resources such as camera and media player whose safe usage is

governed by some state machines. Besides there is an extensive use of other APIs like APIs for

security, communication, etc., each with its associated resource usage property. To reason about

these properties we build a typestate analysis over the intermediate program representation

and compare it against other asynchrony-unaware static analyses for Android. We empirically

show the effectiveness of our approach to both reducing false positives and capturing typestate

violations which are missed by other un-sound approaches. The details of the work are discussed

in Chapter 4

1.3.2 Complexity of the Properties

Classical typestates could be supported or integrated into programming languages just like

types. Typestates are a part of many research and industrial programming languages. This

allows one to model and verify systems for many useful program properties and capture these

typestate violations during the program development phase, obviating the need for costly and

error-prone runtime checks. However, classical typestates can only model properties over a

regular language domain. For instance, using these we can verify a property such as- “pop

should be called on a stack only after a push operation”, but we cannot verify a non-regular

program property such as- “ the number of push operations should be at least equal to the

number of pop operations”. There are many useful control flow and communication properties

which are beyond the domain of regular languages. For instance, “a well-formed XML file must
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have a matching number of opening and closing XML tags” or “a session between a sender

process and a receiver process must the have the number of items sent as greater than or equal

to the number of items received.

We aim at overcoming this expressive limitation of classical typestates by defining a gen-

eralized notion of typestate, called parameterized typestates (p-typestates) as a programming

language feature (a type system) which is expressive enough to model many non-regular pro-

gram properties and yet has a decidable and efficient decision procedure for type-checking. This

includes, formalizing the concept of p-typestate and related properties. We present a property

automaton called as p-typestate property automaton which defines the properties verifiable using

p-typestates.

Presburegr definable p-typestates allow a programmer to model a non-regular program

property. Analogous to a typestate property automaton used to define a regular typestate

property, we define a p-typestate property automaton. A p-typestate property automaton is

a multiple counter system. The states of a p-typestate property automaton are same as a

regular typestate property automaton, with a set of Presburegr definable formulas over set of

auxiliary counter variables, associated with each state. The transitions are defined over a state,

a Presburger formula and an input string defined by some program operation. The details of a

p-typestate property automaton are discussed in Chapter 2.

The state-of-the-art programming language based typestate verification works [9, 82] use

simple types to encode typestates and typestate properties, which are then typechecked either

statically or dynamically. This is generally done by using simple types to capture a state

of a typestate property automaton and annotating each method of the program with pre- and

post- typestate annotations. This allows a Hoare style program verification for a given typestate

property. In a similar way, we too provide language support for modeling a p-typestate property,

we present a typestate-oriented programming language where a programmer can encode a p-

typestate and a p-typestate property as pre- and post- p-typestate annotations. Unfortunately,

simple types lack expressiveness to encode a p-typestate state, i.e. a state dependent on a

Presburger formula over integer variables. Thus, we need richer type theories for p-typestates.

We implement the concept using dependent type theory, modeling p-typestate as dependent

types parameterized over Presburger definable formulas and a set of regular typestate states.

Restricting the dependent types over Presburger formulas provides sufficient expressiveness to

the type system to capture p-typestate properties (given by some p-typestate automaton) and

decidable properties of Presburger logical family yields a decidable type-checking for our type

system. We also present a core dependently typed programming language with the p-typestate

type system. We further provide correctness (soundness of the type system) and decidability
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guarantees of the formalization and the p-typestate system. Finally, we model and verify several

practical non-regular program properties using our language and p-typestates.

1.3.3 Loop Invariant Calculation for Presburger Definable Systems

For each of these axes, an automatic inductive type checking or verification of a rich program

property is hindered by the calculation of invariants for loops and recursive data structures. For

instance various refinement types works [112, 126] using rich type theories to verify invariants

over data require loop invariants or invariants over recursive data to be annotated by the

programmer. Since the Presburger definable p-typestate type system also uses dependent types,

we too require the programmer to provide the loop invariants. These invariants can then be

composed with the incoming Presburger logical formulas to generate an inductive proof for the

p-typestate property of interest. We provide a novel loop acceleration based loop invariant

calculation technique for Presburger definable systems in our work which placates this burden

from the programmer for the class of properties captured via our p-typestates. The details of

the approach are presented in Chapter 5.

1.4 Our Contributions

• We present a sound model of asynchronous control flow and component lifecycle semantics

(single threaded, non-preemptive semantics) in Android application. Built on this model,

we present an intermediate program representation of Android applications called Android

Inter-component Control Flow Graph (AICCFG). This representation aides in designing

sound and precise static analyses for Android application which has been ignored by the

state-of-the-art static analyses works for these applications.

• We develop an asynchrony-aware static typestate analysis over the AICCFG for tracking

Android resource APIs violations for a variety of Android resources like Camera, FileM-

anager, MediaPlayer, etc. The approach is a generic asynchrony-aware static analysis for

Android applications and can be used to develop other static analyses.

• We present a set of benchmark applications (single threaded applications) called as

Asyncbench, comprising of API resource usages for a set of resource type whose pre-

cise typestate analysis requires sound modeling of Android control flow semantics (single

threaded, non-preemptive semantics). We analyze these benchmark applications using

our analysis and compare the results against a popular asynchrony-unaware static anal-

ysis approach [76] and demonstrate the efficacy of AICCFG and the asynchrony-aware

typestate analysis.
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• We introduce the concept of Parameterized typestates and define Presburger definable

parameterized typestates and present a dependent type system to capture and enforce

parameterized typestate properties and define and implement a core typestate oriented

language with static p-typestate typechecking.

• We present a formal study and proof of Soundness and decidability of typechecking for

the dependent type system implementing p-typestates.

• We further show the effectiveness of the p-typestate by implementing many real-world

programs enforcing p-typestate properties which cannot be specified using regular types-

tates and other typestate oriented programming languages.

• We present a novel loop invariant calculation for core language programs specifying p-

typestate properties.

1.5 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we present a brief introduction to some of

the important preliminary and background material which required to easily understand the

technical contributions and ideas discussed in the rest of the thesis. We begin with a brief

background of Android applications, static analysis in general and particularly in the context

of an Android application. This is followed by brief introduction to the background on types,

type systems and richer type theories like dependent types. We also discuss briefly mathematical

logic and logical families like Presburegr arithmetic. This is followed by a small discussion about

the verification of infinite-state systems. These background topics will help to understand the

ideas discussed in Chapter 4 and Chapter 5.

In Chapter 3, we present a detailed survey of existing works related to Android formal

modeling, asynchronous static analysis, static analysis for Android applications, existing type-

state analysis for Android and other programs, etc. This is followed by mentioning of existing

related works with typestate-oriented programming, dependently typed languages, dependent

types extension of simply typed languages, etc. Finally, we present existing works from the

domain of automatic loop invariant calculation.

In Chapter 4, we motivate for a sound model of Android asynchronous control flow, following

which we provide such a formal model and its semantics. We present an intermediate program

representation for Android applications, which captures our formal model and semantics. We

motivate the need for an asynchrony-aware static analysis for Android applications and present

an asynchrony-aware, static typestate analysis over our intermediate program representation.
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We empirically, show the effectiveness of our model and analysis and compare it against other

state-of-the-art analyses.

In Chapter 5, we begin by defining regular typestates and the motivation for a more gener-

alized notion of typestates. Following this, we introduce the idea of Parameterized typestates

(p-typestates) and formalize the concept. We present a way to implementing these p-typestates

in a typestate-oriented programming language using dependent types. We discuss the challenges

associated with the p-typestate type system, typechecking and our approach to handling these

challenges. We conclude the chapter by presenting a novel and simple loop invariant calcula-

tion technique and its integration to our language. We empirically show the use cases for our

language and invariant calculation.

Finally, we summarize our work in Chapter 6 and discuss some of the key directions in

which this work can be extended.
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Chapter 2

Preliminaries

Our thesis covers works, contributions and ideas from various domains like Android applications,

program analysis, formal modeling, type theory, etc. This chapter provides a brief introduction

to some of these topics. This is not a complete description of these works, as that will be out of

the scope of this thesis. We provide a set of references for further reading where ever required.

2.1 Introduction to Android

Chapter 4 discusses an asynchrony-aware static analysis of programs with complex programming

features like asynchronous control flow and other framework or system induced control flow

semantics. We use Android applications as a target use case for the approach. This section

provides the basic background on Android applications and control flow in Android, which will

aid in easy comprehension of the topics discussed in Chapter 4.

2.1.1 Android Architecture

Android is the fastest growing and heaviest used mobile operating system [3]. The Android

platform consists of the core operating system and a stack of software components. Android

applications (apps in short) are mostly written in Java, however, newer versions of Android also

support applications written in Kotlin or C++. The Android SDK [7] tool compiles your code

along with any data and resource files into an APK, an Android package, which is an archive

file with a .apk suffix. An APK file contains all the contents of an Android app and is the file

that Android-powered devices use to install the app. An Android application sits on a device

and runs by interacting with the user, the Android Application Framework, Android system

processes and other layers of the Android Platform.

Figure 2.1 presents a layered architecture of the Android operating system kernel and other

layers of the software stack. The lowest layer and the foundation of the Android platform
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Figure 2.1: The Android Software Stack

is the Linux kernel. Many of the higher layers rely on the kernel, for instance, the Android

Runtime relies on the kernel for threading and low-level memory management. The next layer

is the Hardware Abstraction Layer(HAL) which provides a standard interface to expose device

hardware capabilities to the higher levels of the stack, such as the application framework. The

HAL consists of multiple library modules one for each type of hardware component like camera

or bluetooth, etc. The next layer has two components , the Android Runtime (ART) and the

Native Libraries. The ART is written to run multiple virtual machines (each application runs

in a separate process in a separate VM) on low memory devices by executing Dalvik executables

(DEX) [2] files. The core Android system components like the HAL and the ART are written in

C/C++ and require native library support written in C/C++. These form the Native library

of the stack.

The next important layer from the applications behavior perspective, is the Android Ap-

plication Framework, a Java API framework. These APIs expose the entire feature set of the

Android OS. The framework also provides APIs to expose the functionalities of some of the

Native libraries to the apps. The Java API framework has a rich View System to develop rich

UI for the apps. It contains a Resource Manager to access non-code resources like the localized

strings, graphics and layout file, etc. and these resources are packaged alongside the application

code in the APK. The Android Activity Manager API, manages the lifecycle of the application

and application Components and manages other control flows in the application. Besides these

and other system services, the APIs also contain Content Providers which act as databases

for the applications. At the top of the stack sits the Android application which interacts with

the lower layers through the Application Framework. These interactions are protected via a

capability-based Android Permission System.
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2.1.2 Android Applications

Android restricts each application to its own security sandbox. Each application behaves as a

separate user process in the Android operating system, which is a multi-user Linux system and

is assigned a unique Linux ID. These IDs are used to implement the Android’s main security

feature, the Android permission system. Each application runs in its own process in a separate

virtual machine and runs in isolation from other apps. Next, we define the structure of an

Android application, the permission system and the Android resources, framework and other

Android application features. We present a running example application showing each of these

features.

2.1.2.1 Android Application Components

An Android application is composed of four kinds of components. An application has a set

of functionalities like showing the interface to the user, sending or receiving broadcasts, pro-

viding database functionalities, etc. Android provides a modular design to implement these

functionalities in an application. An application has four different types of components, see

Figure 2.2. Each component in Figure 2.2 is annotated with an actual application image, closely

resembling the component type and the arrows represent the possible interactions between the

components. The (incoming) start arrows to the three component types (other than Content

Providers) depict that each of these component types can be an entry to the application.

• Activity: Activities are the most fundamental components of an application and form

a major percentage of an application’s source code. Activities form the User Interface of

the application and serve as the entry point for a user’s interaction with the application.

Informally, any UI component or screen of an application with which a user is interacting

is some variant of Activity. Practically an Activity is implemented by extending the base

Activity class of the Application Framework. Most apps contain multiple screens and thus

comprise of multiple Activities. Typically one of the Activities of the application is spec-

ified (in the Manifest) as the main Activity, which is the first screen which pops up when

the user launches the application. Each Activity (and similarly other components) are a

bunch of event callback handling methods like onCreate, onStart etc. which are invoked

by the Application Framework (particularly, the Activity Manager) based on certain user

and system events and the lifecycle of the Activity(and other components). Listing 2.1

shows a code fragment for an Activity component named MyActivity. This toy example ac-

tivity simply creates the UI on the screen via a call setContentView(R.layout.activity main)

in the onCreate callback. The setContentView takes a resource layout file as input and
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Figure 2.2: Android Application Components

draws the layout instantiating required Android Views. The activity displays a message

on the screen showing the current callback being executed. The features in MyActivity

interact with other components of the application and will be explained gradually, as

other components are explained.

Listing 2.1: Example : MyActivity

1 package thesis.example.android;

2

3 import android.os.Bundle;

4 import android.app.Activity;

5 import android.util.Log;

6

7 public class MyActivity extends Activity{

8

9 // A string message used to track Activity lifecycle

10 String welcomeString = "Exmaple Application";

11

12

13 /** Called when the activity is first created. */

14 @Override

15 public void onCreate(Bundle savedInstanceState) {

16 super.onCreate(savedInstanceState);

17 setContentView(R.layout.activity_main);
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18 Log.d(welcomeString, "onCreate() finished");

19 }

20

21 /** method to add the name and salary of an employee to the MyContentProvider content

provider**/

22 public void onClickAddName(View view) {

23 // Add a new Employee record

24 ContentValues values = new ContentValues();

25 values.put(MyContentProvider.e_Name,

26 ((EditText)findViewById(R.id.editText2)).getText().toString());

27

28 values.put(StudentsProvider.e_Salary,

29 ((EditText)findViewById(R.id.editText3)).getText().toString());

30

31 Uri uri = getContentResolver().insert(

32 MyContentProvider.CONTENT_URI, values);

33

34 Toast.makeText(getBaseContext(),

35 uri.toString(), Toast.LENGTH_LONG).show();

36 }

37

38 /** methods to start and stop the MyService service **/

39 public void startService(View view) {

40 startService(new Intent(getBaseContext(), MyService.class));

41 }

42

43 // Method to stop the service

44 public void stopService(View view) {

45 stopService(new Intent(getBaseContext(), MyService.class));

46 }

47

48 /** Called when the activity is about to become visible. */

49 @Override

50 protected void onStart() {

51 super.onStart();

52 startService(this);

53 Log.d(welcomeString, "onStart() finished");

54 }

55

56 /** Called when the activity has become visible. */

57 @Override

58 protected void onResume() {

59 super.onResume();

60 Log.d(welcomeString, "onResume() finished");

61 }

62

63 /** Called when another activity is taking focus. */

64 @Override

65 protected void onPause() {

66 super.onPause();

67 Log.d(welcomeString, "onPause() finished");

68 }

69
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70 /** Called when the activity is no longer visible. */

71 @Override

72 protected void onStop() {

73 super.onStop();

74 Log.d(welcomeString, "onStop finished");

75 }

76

77 /** Called just before the activity is destroyed. */

78 @Override

79 public void onDestroy() {

80 super.onDestroy();

81 Log.d(welcomeString, "onDestroy() finished");

82 }

83 }

• Service: Many applications have some long-running operations in the background and

do not provide a user interface. These operations will affect the responsiveness of the UI if

run in an Activity. A Service is an application component which includes such operations.

Another application component or a system process can start a Service and it continues

to run in the background even if the user switches to another application. Additionally,

Services also allow other components to bind to them to interact and perform interprocess

communication (IPC). For example, a service can manage network transactions or run

a music app in the background. Listing 2.2 shows an example Android service, which

can be either bounded (provides an onBind() method) or can be started (provides an

onStartCommand()) method. A started service once started, runs indefinitely, while a

bounded service provides a client-server interface that allows other components to interact

with this service, send request, get response, etc., via Inter Component Communication

(ICC) across components of the same process or application or even across processes.

MyActivity starts this example service using a startService method call at line number 52

(in Listing 2.1).

Listing 2.2: Example : MyService

1 package thesis.example.android;

2

3 import android.app.Service;

4 import android.content.Intent;

5 import android.os.IBinder;

6 import android.widget.Toast;

7

8 public class MyService extends Service {

9

10 public IBinder serviceBinder;

11 @Override

12 public void onCreate() {
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13 // TODO Auto-generated method stub

14 super.onCreate();

15 }

16

17 @Override

18 public IBinder onBind(Intent intent) {

19 // TODO Auto-generated method stub

20 return serviceBinder;

21 }

22

23 @Override

24 public int onStartCommand(Intent intent, int flags, int startId) {

25 // TODO Auto-generated method stub

26 super.onStartCommand(intent, flags, startId);

27 Toast.makeText(this, "My Service Started", Toast.LENGTH_LONG).show();

28 return START_STICKY;

29 }

30

31 @Override

32 public void onDestroy() {

33 // TODO Auto-generated method stub

34 super.onDestroy();

35 Toast.makeText(this, "My Service Destroyed", Toast.LENGTH_LONG).show();

36 }

37

38 @Override

39 public boolean onUnbind(Intent intent) {

40 // TODO Auto-generated method stub

41 return super.onUnbind(intent);

42 }

43

44

45 }

• Content Provider: An Android application might need to store and manage some

data for itself or it might need to share some persistent data with other applications.

Content Providers can help an application manage access to data stored by it, by other

apps and provide a way to share this data with other apps. Thus Content Providers are

private databases of apps. An Android Content Provider is implemented by extending

the Android framework’s ContentProvider class and must implement required a set of

APIs allowing other applications to perform transactions. For instance, an e-mail client

application needs to store the list of contacts or the incoming mails list, which it might

need to share with another application. A particular advantage of Content Providers is

that they allow granular control over the permissions for accessing data. The application

can grant a blanket permission to access data or have a more fine-grained access to READ

or WRITE data.
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Listing 2.3: Example : MyContentProvider

1 package thesis.example.android;

2

3 import java.sql.SQLException;

4

5 import android.content.ContentProvider;

6 import android.content.ContentUris;

7 import android.content.ContentValues;

8 import android.content.Context;

9 import android.database.Cursor;

10 import android.database.sqlite.SQLiteDatabase;

11 import android.database.sqlite.SQLiteDatabase.CursorFactory;

12 import android.database.sqlite.SQLiteOpenHelper;

13 import android.net.Uri;

14

15 // Example content provider with an employee database for a company

16 public class MyContentProvider extends ContentProvider{

17

18 static final String NAME = "thesis.example.android.myapplication";

19 static final String URL = "content://"+NAME+"myContentProvider";

20 static final Uri uri = Uri.parse(URL);

21

22 static final String e_Name = "name";

23 static final String e_Id = "id";

24 static final String e_Salary = "salary";

25

26

27 private SQLiteDatabase sqldb;

28 static final String DB_NAME = "Company";

29 static final String EMPLOYEE_TABLE_NAME = "employee";

30 static final int version = 1;

31 // prepare a create table query string

32 static final String CREATE_COM_TABLE =

33 " CREATE TABLE "+ EMPLOYEE_TABLE_NAME +

34 " ( e_Id INTEGER PRIMARY KEY, " +

35 " e_Name TEXT NOT NULL, " +

36 " e_Salaray DOUBLE NOT NULL);";

37

38 private static class DataBaseHelper extends SQLiteOpenHelper{

39

40 public DataBaseHelper(Context context) {

41 super(context, DB_NAME, null, version);

42 // TODO Auto-generated constructor stub

43 }

44

45 @Override

46 public void onCreate(SQLiteDatabase db) {

47 // TODO Auto-generated method stub

48 db.execSQL(CREATE_COM_TABLE);

49

50 }

51
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52 @Override

53 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

54 // TODO Auto-generated method stub

55 db.execSQL("DROP TABLE IF EXISTS "+ EMPLOYEE_TABLE_NAME);

56 onCreate(db);

57

58 }

59

60 }

61

62 @Override

63 public boolean onCreate() {

64 // TODO Auto-generated method stub

65 Context context = getContext();

66 DataBaseHelper dbHelper = new DataBaseHelper(context);

67

68 return dbHelper.getWritableDatabase() == null ?false : true;

69 }

70

71 @Override

72 public Cursor query(Uri uri, String[] projection, String selection,

73 String[] selectionArgs, String sortOrder) {

74 // TODO Auto-generated method stub

75 return null;

76 }

77

78 @Override

79 public String getType(Uri uri) {

80 // TODO Auto-generated method stub

81

82 }

83

84 @Override

85 public Uri insert(Uri uri, ContentValues values) {

86 // TODO Auto-generated method stub

87 long row = sqldb.insert(EMPLOYEE_TABLE_NAME, "", values);

88 if(row > 0){

89 Uri row_Uri = ContentUris.withAppendedId(uri, row);

90 getContext().getContentResolver().notifyChange(row_Uri, null);

91 return row_Uri;

92 }else

93 return null;

94 }

95

96 @Override

97 public int delete(Uri uri, String selection, String[] selectionArgs) {

98 // TODO Auto-generated method stub

99 return 0;

100 }

101

102 @Override

103 public int update(Uri uri, ContentValues values, String selection,

104 String[] selectionArgs) {
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105 // TODO Auto-generated method stub

106 return 0;

107 }

108

109 }

Listing 2.3 shows a Content Provider (MyContentProvider) from the running example ap-

plication. The content provider contains a SQLiteDatabase instance and a DatabaseHelper

inner class in the MyContentProvider class. The content provider is required to implement

methods from the ContentProvider class for standard create, update, delete and insert

database operations.

• Broadcast Receiver: An Android application needs to send and receive broadcast mes-

sages to/from Android system and other applications. For instance, a music player app

must receive and pause the playing music on an incoming call. Broadcast Receivers are the

components of an application for sending and receiving such broadcasts. An application

can receive broadcasts against an event (user or system) by defining a receiver component

and registering it for particular kind of events or Intents. A broadcast receiver can be

registered in two ways, through manifest declaration or through context registration. If

a broadcast receiver is declared in the application’s manifest, the system forwards the

message (launches the app if not already running) to the application.

Listing 2.4 shows a Broadcast Receiver with a lifecycle method onReceive() method. The

MyActivity sends a broadcast intent which is intercepted by MyBroadcastReceiver. The

receiver registers for the broadcast intent in the AndroidManifest.xml file (explained later).

Listing 2.4: Example : MyBroadcastReceiver

1 package thesis.example.android;

2 import android.content.BroadcastReceiver;

3 import android.content.Context;

4 import android.content.Intent;

5 import android.util.Log;

6

7 public class MyReceiver extends BroadcastReceiver {

8 public static final String msg = "My receiver";

9 @Overrid

10 public void onReceive(Context context, Intent intent) {

11 // TODO Auto-generated method stub

12 Log.d(msg, "received the msg");

13 }

14

15 }
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Each of these component types has a set of APIs for fine-grained control and usage. Details

of these component types can be found from the official Android API guide [7].

2.1.2.2 Android resources and Manifest

Each Android application is compiled and packaged as .apk package. The package contains the

dalvik bytecode [2] for the application along with a set of resources required by the Android

framework for installing and executing the application.

• Application Resources: Each application uses resources like images, strings, etc., which

are used by certain components of the application or are necessary to install and execute

the application in the application framework. These resources include, XML files needed

by the application like the layout XML files (except the manifest.xml), string and other

constant values used in the application, images, etc.

• Application Manifest : Each Android application is mandatorily packaged with an An-

droidManifest.xml file which is a file containing useful information about the application.

For instance, the Manifest contains information regarding each component of the appli-

cation along with their properties, the Java package for the application, the permissions

required by the application, libraries required for the execution of the application, etc.

The structure of the Manifest is like a typical XML file with appropriate sets of elements

and corresponding properties. Figure 2.3 presents an example code fragment showing

a part of an AndroidManifest.xml file for the running example application with a single

activity named MyActivity, a service, a receiver and a content provider. The Manifest first

defines a user-defined permission and then makes the application ask for this permission.

Android has an install-time static permission system such that an application must ask

for all the permissions upfront in its Manifest before the application is installed and these

must be granted by the user for a successful installation of the application.

The Manifest also defines or affects certain crucial aspects of the control flow of an ap-

plication, as the Android System reads the Manifest to define: the main activity of the

application (a kind of entry point to the application when it is started), the set of pub-

lic components of the application, defining the secondary entry points of the application

which can be invoked by other applications through asynchronous message passing mech-

anism in Android called Inter-Component Communication (ICC). ICC includes a set of

Intent filters, defining on what data or action, the application can be invoked, etc. Thus in

summary, the Android Manifest associated with an application controls or rather affects

almost all major stages of the application’s execution from its creation, its interaction
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1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.thesis.example.android"
3 package="thesis.example.android.myapplication">
4 <permission android:name="android.example.iisc.MY_PERMISSION" . . . />
5 <uses-permission android:name="android.example.iisc.MY_PERMISSION" />
6 . . .
7 <application . . .>
8 <activity android:name="android.example.iisc.MyActivity"
9 android:permission="android.example.iisc.MY_PERMISSION"

10 . . . >
11 <intent-filter>
12 <action android:name="android.intent.action.MAIN" />
13

14 <category android:name="android.intent.category.LAUNCHER" />
15 </intent-filter>
16 . . .
17 </activity>
18

19 <receiver android:name="MyReceiver">
20 <intent-filter>
21 <action android:name="com.tutorialspoint.CUSTOM_INTENT">
22 </action>
23 </intent-filter>
24

25 </receiver>
26 </application>
27

28

29 <service android:name="MyService" />
30

31 <provider android:name="MyContentProvider"
32 android:authorities="thesis.example.android.myapplication.MyContentProvider"/>
33 </application>
34

35 </manifest>

Figure 2.3: Example : Application Manifest Fragment
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with other components and applications, its access to useful system resources via permis-

sion, its dependence on other libraries, etc. making it the most fundamental component

of the application.

2.1.3 Control Flow in Android Applications

Android applications are generally written in Java, but the control and data flow in an ap-

plication differ substantially from that of a typical Java program. An Android application

interacts with the Android application framework and Android System processes during exe-

cution. There is no concept of a single entry method like main in a typical Java application.

Contrary to this, an application has a set of public components (a component is tagged public

in the associated AndroidManifest.xml file) which act as possible entry points to the applica-

tion on certain user or system events. The control flow in each component is governed by its

interaction with the user, other components and the Android system. The Android systems

further define a lifecycle for each type of component governing how the control flows between

different methods of a component.

2.1.3.1 Android Activity Lifecycle

An Android activity contains a bunch of framework declared lifecycle methods like onCreate,

onStart, onDestroy, etc. The activity life cycle can be defined as a binary relationship between

these methods such that two methods are related if the second can be executed after the first.

This possible execution ordering is managed by the Android Application Framework (Activity

Manager) and depends on the state of the Activity. Figure 2.4 is adapted from the Android

official page and depicts the Activity lifecycle visually. An activity during its lifetime is in

four main states viz., started, running, paused and killed. Each lifecycle callback method is

invoked and runs without preemption and defines transition of activity between these states.

The component lifecycle associated with each component type aids in providing an optimum

user experience and system resource usage. An activity starts and the system creates or draws

its user interface on the screen (declared in an XML layout file associated with the application)

in its onCreate method. The onCreate method also performs other fundamental setup tasks for

an activity like defining member variables and configuring other parameters and UI of activity.

Once the activity is created its onStart and onResume methods are called before any switch to

a new state.

The onStart method call makes the activity visible to the user while the system prepares

the activity to come to the foreground and become interactive. The finish of onStart makes the

Android system invoke the onResume method when the activity really comes to the foreground.

25



This switches the activity to the running state. The activity stays in this state until some user

or system event takes the focus away from the current activity, like hitting the back button or

starting another activity or application. These events trigger the paused state of the activity

by making the system invoke the onPause method. This is the first indication that the user

is leaving the current activity and hence this method performs routine tasks related to saving

the current state of the activity to which it can again be resumed. onPause takes the current

activity to the background which can then either be restored to the foreground by the Android

system by calling onResume again or can be pushed to an invisible state by the system call to

onStop.

In the onStop method, the activity should release almost all the resources which are no

longer needed for the activity. For instance, a Broadcast receiver registered earlier may be

unregistered in onStop or temporary data should be saved to permanent storage. From the

stopped state, the activity either comes back to start state again or finishes its task and goes

away to the killed state. If the activity comes back, the system invokes onRestart, while if

it goes away the system invokes onDestroy method. onDestroy is called before the activity

is destroyed. The system invokes this method either because the activity is finishing or some

other component called the finish method. Another reason this method can be called is when

the system has resource crunch (like space) and it decides to kill the activity prematurely.

Listing 2.1 shows a typical lifecycle method for an activity. The code fragment is commented

showing when a particular lifecycle callback is invoked. For simplicity, these methods just

log the current callback method being executed along with the welcome message. All the

lifecycle callback methods of an activity (or another component) are called asynchronously

by the Android system and follow a non-preemptive semantics. Lifecycles interact with other

synchronous and asynchronous calls and callbacks to create intricate control flows in Android

applications.

2.1.3.2 Android Service lifecycle

Similar to Activities, Services have defined life cycles. As mentioned earlier unlike Activities,

there are two ways to interact with a Service, either via normal Inter-Component Communi-

cation (ICC) through Intents or by binding to a Service. This gives two different lifecycles for

these two kinds of Services. The details about the Service life cycle and life cycles associated

with other components can be found on the Android official page [7].

Listing 2.2, shows some of the lifecycle callbacks like onStartCommant and onBind. The on-

Bind method returns an IBiunder object to the caller (the MyActivity activity here), which can

be used for sending client-server like communication requests to this Service. The onStartCom-
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Figure 2.4: Activity Life cycle
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mand method is called when the service is started to execute some task independently of the

caller. Other lifecycle callback methods like onDestroy and onUnbind are called by the Android

system on corresponding events.

2.1.3.3 Android ICC

The components of an Android application need to communicate (via control flow) and share

data amongst each other. For instance, an e-mail client Activity displaying the list of emails (a

display activity) in the inbox needs to start another activity to view (view activity) a selected

mail. Along with the control flow, the display activity must also send some data regarding the

mail being selected for the view activity. This is an example of intra application ICC. ICC is

also needed across applications, For instance, the same e-mail client might need to open a PDF

document received as an attachment. To achieve this, the e-mail application needs to send an

ICC to the PDF-viewer application along with required data.

These inter-component communications in Android happen through asynchronous message

passing. These asynchronous messages are called Intents. The activity MyActivity shown in

Listing 2.1 shows how the activity interacts with a service MyService using Intent (line number

52 in the onStart lifecycle method), which in turn makes a call to startService() api with an Intent

parameter containing explicit target MyService.class. Next we define Intent for formally.

Intent : According to the Android official page, “An Intent is an abstract description of

an operation to be performed”. An intent can be used to start an Activity (using startActiv-

ity(Intent)) or Service (startService(Intent)) or sending broadcasts (sendBroadcast(Intent...))

or binding to a Service (bindService(Intent)) or some other interaction between components.

Typically an Intent is called as follows :

1 Intent myIntent = new Intent (action, data);

2 startActivity(myIntent);

Where action defines a system or user-defined method which the target component will execute

and data defines the data which may be required to complete the action. Some of the examples

for action/data pair can be, (ACTION DIAL/tel1234555), this action/data pair will display

the phone dialer with the tel number filled. This is an example of a system defined action.

The code fragment is an example of an implicit intent, where the target of is dynamically

chosen based on the action and data field. The components register for certain action or data

values via intent-filters in the AndroidManifest.xml file and are invoked when an Intent with

the corresponding action or data is sent out. Another way of sending intents is via explicit

target information.
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1 Intent myIntent = new Intent (MyTargetActivity.class, data);

2 startActivity(myIntent);

Here the target activity class is explicitly defined. In addition to the primary action/data

attributes of Intents, there can be various secondary attributes attached to an Intent, like Type

(defining the MIME data type explicitly), Extras (Bundle of extra information), etc.

2.1.3.4 Android Resource Protocols

Android devices have a rich set of hardware resources which are exposed via a group of the

Android framework provided APIs. This allows the developers to easily use resources like

Camera, MediaPlayer, SQLiteDatabases, Files, etc. Each of these resources has an associated

resource usage protocol which must be respected by the developers. These usage protocols are

basically typestate properties, defining the validity of a method in a given state of the resource.

Developers generally enforce these protocols via explicit runtime checks on the state of the

resource object.

initstart open

error

open

release, startFD, startP

startFD, startP
release

open

open, release, startFD, startP

Figure 2.5: Simplified Resource Usage Protocol for Android Camera API: startFD := start-
FaceDetection, startP := startPreview

For example, Figure 2.5 shows the API usage protocol for the Camera resource. Unfor-

tunately, enforcing these protocols via runtime checks has various limitations. Firstly, The
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protocol is presented as a separate document (like a class document) which is then enforced

using explicit state-checks in the program. This makes the program hard to comprehend as

the program text is flooded with checks for a property which is not a part of the program

logic. Secondly, these runtime checks are costly and for certain resources with complex usage

protocols like Android MediaPlayer, the runtime cost may be substantial. Finally, this makes

debugging harder, as the exceptions raised due to errors are far removed from the site of the

cause of the error. Chapter 4 discusses these protocols and an analysis to statically identify

these violations in detail.

2.2 Interprocedural Static Analysis

An inter-procedural data flow analysis analyzes the data flows in programs with procedures.

For example, consider code fragment with a main procedure and two other procedures. Android

applications like most of the real-world programs are modular and contain procedures and pro-

cedure calls. Thus, an analysis for Android applications requires inter-procedural capabilities.

This can be done either statically, called as static inter-procedural analysis or dynamic, called as

dynamic inter-procedural analysis. There are various well understood inter-procedural analysis

approaches and underlying theories for them, like call-string based approach or functional or

iterative approach [80]. Practically, one of the most efficient and extensively used approaches

is due to Reps et al. [110] which reduces the inter-procedural data flow analysis problem to a

graph reachability problem over an exploded inter-procedural control flow graph of the program.

This approach is commonly known as the IFDS approach in the literature.

Android applications are highly modular and comprise of a large number of procedures

or methods which are called both by the application code as well as the Android framework

libraries. Thus, IFDS is extensively used in inter-procedural static analyses for Android appli-

cations [76, 125].

However, calls in Android applications may be either synchronous, where the caller blocks

for the control to return from the callee, or asynchronous, where the caller continues its exe-

cution while the call is enqueued to a scheduler which dispatches the call at some later time.

Furthermore, Android applications allow callbacks from the Android System in the form of

asynchronous calls and other framework library callbacks. These features mandate various

modifications to the original IFDS approach to incorporate asynchronous features of Android

applications and its ICC. The details of these modifications are presented in Chapter 4.
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2.3 Introduction to Types and Type Systems

As programs grow in size and complexity, reasoning about the behavior of these programs

and debugging them becomes non-trivial and increasingly hard. This may lead to multiple

programming errors which might open exploitable vulnerabilities making them prone to nu-

merous attacks. Furthermore, there has been a striking rise in both the size and the complexity

of real-world programs thus making reasoning about the behavior of the programs a major

research focus of the research in the programming languages domain. Many of these works

[110, 80, 39, 115, 97, 19] develop proofs and other automatic systems to debug and verify pro-

grams. These program verification and analysis techniques prove/verify the correctness of the

program. In this statement correctness is a loaded term and needs some explanation. Cor-

rectness most generally means, that the “ the program semantics follows the intention of the

programmer”. This intention is termed as the verification property. There are various well-

known verification techniques and frameworks to verify a given property over a program such

as, Hoare Logic [19], Modal Logic [50], Denotational Semantics [105], etc. These systems and

frameworks have expressive power to define and prove very general (complex) program prop-

erties but are mostly manual or semi-automatic requiring significant efforts and understanding

from the programmer. Another less rigorous and fully (or considerably more) automatic ap-

proach for program verification is Types and Type systems. In this thesis, we present a rich type

system to verify rich typestate properties over programs. This section presents a brief intro-

duction to the concepts of types, type systems, richer type theories and their use for program

verification. These concepts will help in elaboration of the ideas and work presented in the

Chapter on Parameterized typestates 5

2.3.1 Types and Type Systems

The main use of type systems is to prevent the occurrence of execution errors in a program.

This informal definition of type systems requires further explanation. The simplest definition of

an execution error can be the occurrence of an unexpected or unwanted software fault, like an

illegal instruction fault or an illegal memory reference fault. However, execution errors might

also include other unexpected behaviors of the program without any immediate visible effect.

In fact, these errors are much harder to locate and debug. In general, an execution error may

refer to, a program showing a semantics not intended by the programmer. We provide a formal

definition of some of the useful terminologies, starting from the definition of types.
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2.3.2 Typed and Untyped Languages

The type of a program variable defines the kind or the set of values this program variable may

assume during any execution of the program. For example, if x is has a type Boolean, it may

be assigned only values from the set { True, False } and not a numeric value like 3. Further,

the type of a program variable also defines the set of valid operations or functions on the

program variable. For instance, a function not(x) is a valid operation on the program variable

x, with a sensible meaning, while a function add(x,3), with a usual semantics of addition is not

a valid operation. Programming languages where program variables may be assigned types are

called typed languages, while those languages where program variables may assume any values

during execution and place no restriction on the valid set of operations are called untyped

languages. The simplest and the most extreme case of untyped languages is the untyped lambda

calculus [105] which never enters a fault/error execution. The component of a typed language

keeping track of types assigned to different program variables, and in general of expressions in

the program and checking if an operation being executed is valid over a typed program variable,

is termed as the type system of the typed language. A typed language can either be explicitly

typed, if types are allowed as the part of the language syntax or implicitly typed otherwise.

Most real-world languages are explicitly typed However, languages like ML or Haskell allow

omitting some type annotations which can be inferred (explained later) by their type systems.

2.3.3 Execution Errors and Safety

Execution error of a program can either cause the program to terminate (abnormally) imme-

diately or may go unnoticed and later cause arbitrary behavior. The former kind of errors

are termed as trapped errors, while the latter are called untrapped errors. An example of an

untrapped error is improperly accessing a legal address, like accessing a data outside the range

of a data structure or jumping to a wrong memory address. Both these examples for few of the

most exploitable vulnerabilities opening numerous attack windows. An example of a trapped

error is calling an undefined procedure, division by zero, etc. A program or a program fragment

is safe if it guarantees absence of untrapped errors. A language where every program fragment

is guaranteed to be safe is called a safe language. Types and type systems are crucial tools for

providing such language safety in the languages. In the absence of types, safety can be enforced

via runtime checks.

2.3.4 Well-behaved Programs

For a given program, a set of trapped and untrapped errors form a set of unsafe or forbidden

errors. A program is called well-behaved, if it does not allow any forbidden error to occur. A

32



well-behaved program or program fragment is safe. A language where all legal programs are

well-behaved is called a strongly-checked language and when this strong checking is provided

by a type system, the language is termed as strongly typed.

The well-behavior of a program fragment in a typed language can be enforced by performing

static checks. These languages are called statically checked languages. The process of checking

the safety or well-behavior is called typechecking and the algorithm which performs this type-

checking is called the typechecker or the typechecking algorithm. This is achieved by checking

that each program variable in the program is well-typed according to the set of rules for lan-

guage expressions. These rules are termed as the typechecking rules of the type system. Some

of the examples of statically checked languages are ML, Java, Pascal, Haskell, etc.

Besides static checking, typed or untyped languages can provide well-behavior guarantees

including safety via detailed runtime checks in the programs. These runtime checks may exclude

all forbidden errors in the program. This runtime checking process is called dynamic checking

and the languages are called dynamically checked languages. LISP is a common example of

dynamically checked language.

Most of the real world languages require dynamic checks along with the static checking,

thus a language with static checking does not exclude dynamic checking.

2.3.5 Static and Dynamic Typing

Statically typed programming languages do type checking (the process of verifying and en-

forcing the constraints of types) at compile-time as opposed to run-time. Dynamically typed

programming languages do type checking at run-time as opposed to Compile-time. Static type

checking (static typing) is more common as it tries to approximate the runtime behavior of the

program without incurring runtime cost. Static typing is present in many important languages

like C, C++, Haskell, ML, Java, etc., while Scheme, Python, etc., belong to dynamically typed

languages. Although less costly and efficient in catching errors early at compile time, static

type systems are necessarily also conservative. They can categorically prove the absence of

some bad program behaviors, but they cannot prove their presence, and hence they must also

sometimes reject programs that actually behave well at runtime. For example, a program like-

if <complex test> then 5 else <type error>

will be rejected as ill-typed, even if it happens that the <complex test> will always evaluate

to true, because a static analysis cannot determine that this is the case. The tension between

conservativity and expressiveness is a fundamental fact of life in the design of type systems.
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The desire to allow more programs to be typed by assigning more accurate types to their parts

is the main force driving research in the field.

2.3.6 Typechecking Algorithm

An algorithm which checks that a program fragment is well-behaved is called a typechecker or

a typechecking algorithm. More comprehensively, given a program variable or expression x,

a typing environment Γ assigning types to each free variable in x, and a type τ , and a set of

typing rules (explained later), a typechecking algorithm checks that τ is a correct type for x or

can be assigned a type τ using the typing rules for the language.

There are various typechecking algorithms in the literature based on the feature and com-

plexities of the underlying language, the property being checked and the typing rules. The

typechecking algorithm used by us in the later chapters for typechecking p-typestate programs

is based on typechecking algorithms for dependently typed languages [38].

Here we present a brief outline of the basic typechecker, which we extend to design our

constraint-based dependent typechecking algorithm.

The basic typechecking algorithm takes a type annotated program or program fragment,

language definition and a set of typing rules as input. It checks that for a set of expressions

and statements called the basic expressions, the type of the value assigned to the expression

is according to the annotated type and the typing rules. For statements without any return

value, the typechecker checks that the statement is well-formed (according to the typing rules).

It then uses these well-typed basic expressions to inductively check more complex expressions

and statements. The algorithm has different cases, one for each expression or statement in the

language definition. For instance, for a simple assignment statement of the form x = e;, the

typechecker checks that the type of the value returned by the expression e is equivalent to (or

subtype of, as explained later) the type of the variable x.

Chapter 5 presents a typechecker which extends this basic typechecking algorithm to type-

check complex p-typestate properties over a language with dependent types and objects. The

algorithm rather than explicitly checking the correctness of assigned type for each expression,

generates a set of logical constraints of the following form:

∀x, y ∈ N.(x ≥ y ∧ x = 0 ∧ y = 0 ∧ ...)

The algorithm uses the typechecking rules (or what is called as typing rules) to generate

these constraints, and later verify these constraints using an off-the-shelf SMT solver [43].
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2.3.7 The Type Systems Language

A type system specifies typing rules for a language independently of any typecheking algorithm.

This includes defining types for the terms of the language and rules for typing expressions of the

language. These rules are themselves specified in a formal language having a specific semantics,

here we explain this language of type systems.

Judgments A type judgment defines the type of a term or an expression in an environment

Γ. A typical judgment is of the form:

Γ ` t : τ

The above judgment is read as Γ entails that t has an associated type τ . A judgment of the

above form specifies that a language term t has a type τ in a static typing environment Γ. A

typing environment is a possibly-empty map (denoted by ·) of free variables of the language

to types. free variables are the program variable whose type does not depend on the type of

other variables as it is defined independently, for example, in the expression λx.x + y, y is a

free variable while x is a bound variable. Following examples show a set of judgment rules :

· ` true : Bool true is a constant of type Bool

., x : Nat ` x+ 1 : Nat if x has a type Nat then x+1 is of type Nat

Another common form of typing judgment is the well-formedness judgment. A well-formedness

property checks that a structure (like an environment, Class, etc.) is properly constructed. The

well-formedness is represented by a special symbol ?. For example a possible representation of

the well-formedness judgment for the typing environment Γ can be as follows:

Γ ` ?

Type Rules Type rules for a language check the correctness of certain typing judgment based

on the correctness of other judgments. This is mainly achieved by inductive checking with some

base cases which are intrinsically known to be true. A typing type rule is as follows:

T-Rule Name
Γ1 ` ti : τi Γ2 ` tj : τj...Γn ` tn : τn

Γ ` t : τ

Each such type rule is written as a set of premises, judgments of the form Γi ` ti : τi, written

above the horizontal line and a single conclusion judgment written below the line. Such a

rule states that, if all the judgments in the premise are true, then the conclusion is true. If
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a judgment’s truth does not depend on any other judgments (an axiom), the premise is left

empty.

We use an example of simply typed lambda calculus, the simplest typed language to demon-

strate the structure and usage of the typesystem and typing rules. to define appropriate type

rules we should begin with formally defining the underlying language called the simply typed

lambda calculus. The language Syntax is defined in Table 2.1 and the Evaluation rules are

shown in Figure 2.6 :

Syntax
t := terms

x variable
λx : T.t abstraction

t t application

v := values
λx : T.t abstraction

T := types
T → T function types

Table 2.1: Simply Typed Lambda Calculus Syntax

E-APP1
t1→ t1′

t1 t2→ t1′ t2

E-APP2
t2→ t2′

v1 t2→ v1 t2′

E-APPABS
(λx : T11.t2)v2→ [x 7→ v2]t12

Figure 2.6: Evaluation t→ t′

A term t in the language is either a variable (x), or an abstraction, shown as a lambda term,

or an application of a term to another. Abstraction is called a lambda term and it represents

a function which is the most basic building block of lambda calculus. A lambda term has a

bound variable x and an annotated type T , and another term t representing the body of the
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abstraction. The application contains two terms, one applied to another. The Evaluation rules

define small step semantics for the language, showing how a term t evolves to t′. It is worth

noticing that rule (E-APP2) applies only if the first term of an application is an abstraction.

Intuitively, it says, for a given function term v1, if its parameter reduces from t2 to t2′, then

the application is performed on the reduced term. Rule (E-APPABS) presents a reduction rule

for application (called the β reduction in literature), the rule says that the parameter x of the

LHS abstraction is replaced by the actual value in the body term of the abstraction. This is

an example of call-by-value evaluation semantics.

Next, we present typing rules to enforce well-typedness of programs, there is a type rule

for each term in the language. As mentioned earlier, a typechecking algorithm checks that a

program fragment satisfies these typing rules.

T-VAR
x : T ∈ Γ
Γ ` x : T

T-ABS
Γ, x : T1 ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2

T-APP
Γ ` t1 : T11 → T12 Γt2 : T11

Γ ` t1 t2 : T12

These type rules define well-behaved expressions, the (T-VAR) rule say that the type of a

free variable x is same as its type in the typing environment. The (T-ABS) rule defines the good

behavior for abstractions. It specified that, if in an extended typing environment, extending the

typing environment with a mapping for the bounded variable x to T1, the type of the body is

T2, then the type of the abstraction term is T1 → T2. The (T-APP) rule defines a well-behaved

application expression. It specifies that for a given abstraction value t1 of the type T11 → T12

and a given parameter term t2 of the type T11, the return type of the application must satisfy

the type of the abstraction.

This short introduction to syntax, evaluation rules and the typing rules will help elaborate

the contribution and ideas discussed for p-typestate type systems in Chapter 5.

2.3.8 Type Equivalence and Subtyping

Typechecking is a process of verifying that each term in the program is well-typed based on

the typing rules of the type-system. Typecheking can be done either at compile time or at

runtime, thus defining static and dynamic typechecking respectively. Checking the correctness

of associated types further requires checking if two types are equal or equivalent. Generally,
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there are two kinds of type equivalences, viz., Nominal and Structural, based on two kinds of

type systems of the same name. Type systems like Javas, in which names are significant and

equivalence and subtyping are explicitly declared, are called nominal. Others in which names

are inessential and subtyping is defined directly on the structures of types are called structural.

The details of nominal and structural type systems and their equivalences and subtyping will

require extensive discussion which is beyond the scope of this work. The details can be found

in a standard text on type systems, such as [105].

Two types τ1 and τ2 are equivalent if one can be replaced by the other in the type system.

The following typing rule defines this definition formally:

T-Equivalence
Γ ` τ1 ' τ2 Γ ` t1 : τ1

Γ ` t1 : τ2

One important expected property of a good type system is that it should be decidably verifiable

, i.e., the typechecking algorithm should always terminate. There is always a trade-off between

the decidability of the typechecking problem and the expressiveness of the type system. For

instance, a rich type system that allows rich predicate logical expressions as a part of the type

annotations has high expressiveness but may lack decidability while simpler type systems have

a decidable and efficient type checking but lack expressiveness to check the correctness of rich

program properties.

The equivalence of types is a relatively stronger restriction for types to be replaceable. Thus

many type systems allow subtyping, a much weaker relation than equivalence to be sufficient

for replacement of types. A subtyping relationship, represented typically as τ1 <: τ2 (i.e. τ1

is a subtype of τ2) allows τ1 to replace τ2 in typing rules of the type system. Thus subtyping

relation captures the fact that a subtype is more refined or contains more information than the

supertype and hence can safely be used in a context where a term of its supertype is expected.

This is termed as “the principle of safe substitution”. Subtyping relation can be added to the

type systems by adding three main extra typing rules. One formally defines the principle of

safe substitution while other two capture the general reflexive and transitive properties of the

subtyping relation.

T-subtyping
Γ ` τ1 <: τ2 Γ ` t2 : τ2

Γ ` t2 : τ1

T-Ref ` τ <: τ

T-Trans
Γ ` τ1 <: τ2 Γτ2 <: τ3

Γ ` τ1 <: τ3
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2.3.9 Type Inference

Annotating each term of a program with its type is a hard task even for experienced program-

mers and this burden could be placated by automatically deducting the most general possible

type of a term in the program. This process of automatic deduction of the most general type

of a term in a program is called type inference. Type inference is a much harder problem than

typechecking. The type inference problem for a given term is dependent on the type system in

question. Thus a simple type system cannot express many useful properties but has a much eas-

ier type inference problem to solve as compared to a richer type system with expressive power.

For instance, the type inference problem for an explicitly typed language like Pascal [114] is

easy to solve as compared to an implicitly typed language like ML [91]. The type inference

problem is especially hard with richer type systems like one with polymorphic types [29] and

other type theories like dependent types.

2.3.10 Dependent Types

In type theory, a dependent type is a type which depends or is a function of value/term of some

other type. Thus, it is dependent on the terms of other type and hence the name. A classic

example of dependent types is (′a V ector n), Vectors of size n and component type a. Such a

Vector can be defined using a type family of Vectors, which are basically one-dimensional sized

arrays. A type family is defined as :

V ector : Nat→ Type

The above declaration asserts that V ector is a type constructor which maps a natural number

k : Nat to a type. The idea is that the type V ectork contains vectors of length k of elements

of some fixed type, say data.

To use these types which are functions of terms, we need to introduce them (instantiate an

element of the type family). For example, a way to initialize the Vector, is to define a function,

init which takes a type a of data and an n : Nat and returns a vector of components a and size

n. In dependent type theory, the typing of this function will generally be written as,

init : Πn : Nat. a→′ a V ector n

The type of init introduces the dependent product type (“Pi type”), represented as Πx : S.T.

This is a dependent function type, a generalization of the function type (T → T ) of the simply

type lambda calculus [105]. It is a function that maps element s : S to a Type generated by
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[x 7→ s]T. Compared to the simple function types, the result type of a function with a Π-type

can vary according to the argument supplied.

Expressiveness and Usage of Dependent Types The expressive power of dependent

types comes from its capabilities to capture dynamic properties of the data in its type, like the

length of the Vector data structure in the above example. Other example are matrices of size

m × n, trees of height m or height balanced trees of certain height. This makes it possible to

check some of the dynamic properties of the program statically. For example, such dependently

typed Lists and Arrays with their size information a part of their definition/type may eliminate

the need for runtime array-bound checks [127]. This can be achieved by defining a function to

access the element on following lines:

getElement : Π(size : Nat).P i(i : int | {0 ≤ i < size}).Int(i)→ List(size)→′ a

The function’s signature takes as parameter an integer index i, which is restricted to be strictly

less than the size size of the List. The function is not defined for indexes larger than the

size of the List, and thus it is guaranteed to avoid accesses beyond the size of the List. In

general, the parameters to a dependent type can be any term of the language (including a whole

program). This gives dependent types their extreme expressive power, but as the complexity

of the parameters increase, reasoning and typechecking the properties captured by them (like

the property of the size or the index range mentioned above) becomes complex. In general, the

typechecking problem for dependent types is undecidable [44]. Thus, in theory, dependent types

can statically verify any property (structural or dynamic) of interest, but this expressiveness

is bounded by the undecidability results of dependent typechecking (discussed later) and thus

most of the practical languages and systems using dependent types to model and verify program

properties restrict the type system in various ways to achieve an expressive yet decidable type

system.

While there are numerous works [127, 26, 98] exploring the practical utility of dependent

types in the functional languages domain, the applicability in imperative languages domain is

less explored [126] and negligible in the domain of Object-oriented languages [99]. This may

be attributed to the hardness of reasoning about side-effects and states and their effect on

dependent types. Breaking this pattern, we present a dependently-typed language including

p-typestates which is an imperative, typestate-oriented language and object-oriented languages.

Besides Π types, the dependent type theory also presents a generalization of pairs or tuples

called as the Σ types. The sigma types, represented as Σx : T1.T2 generalize ordinary products

(A × B), just as dependent function type Π generalizes ordinary functions. A sigma type
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Σx : T1.T2, represents a type family (x : T1, y : T2), such that type of y depends on x. The

degenerate case when x does not appear free in T2 amounts to the ordinary product type

written as T1 × T2. In this thesis, we use only Π types to model p-typestates and thus we do

not elaborate further on Sigma types. The interested reader may refer a standard work on

dependent types like [106].

Dependent function types and Sigma types can capture various dynamic or behavioral prop-

erties of data and program using type parameters which can be any valid term in the language.

For example, dependent types can be a good candidate to capture the state associated with

an object in an object-oriented language as an interface. This idea is similar to typestates and

thus makes dependent types particularly useful to express typestate properties and checking

them statically. For example, consider the typestate property associated with an Iterator over

a Java Collection. The next method is valid only if the Collection has more elements, and this is

generally checked dynamically (for example in Java Collections) using a method hasNext. This

property can be statically enforced by enumerating the states of the Iterator and then defining

methods, with dependently typed parameters, parameterized over the states. Listing 2.5 shows

an Interface for such an Iterator. The definition guarantees that we can never call next and

remove in an illegal state. The listing declares a set of states IterState = { S, T, U, V } (names

of the states are not significant) and creates an Iterator as a dependent function type, indexed

over this set. This allows a programmer to define functions like hasNext, next, remove over this

Iterator. For, example, function hasNext is defined only for an Iterator is a state S or U and not

for other two states. Thus, using dependent types a programmer can define when an operation

is valid/invalid over a given data object, or in other words encode typestates. Such an approach

of encoding typestates using dependent types has been discussed in some of the works in the

functional languages domain. For example, Eff [25] discusses how effects can be modeled and

reasoned about using dependent types in Idris [26].

Listing 2.5: Iterator interface using dependent types

1 IterState = {S, T, U, V };

2 Iterator : IterState -> Type

3 hasNext : Πst {S, U }. Iterator(st) -> ΣnewSt {S, T, V }.Iterator(newSt)

4 next : Πst {T, V }. Iterator(st) -> ΠnewSt {S, U }.Iterator(newSt)

5 remove : Πst {U, V }. Iterator(st) -> ΣnewSt {S, U }.Iterator(newSt)

2.3.11 Curry-Howard Correspondence

Another way to introduce dependent types is through Curry-Howard correspondence, also

known as proposition-as-types. The correspondence associates simple types to propositions

in a constructive logic theory [93]. A term of a type is analogous to a proof of a proposition.
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The underlying idea is the relationship between types, terms, functions, etc. to propositions,

proofs and implications respectively. This correspondence could be further extended to first-

order predicate logic leading to dependent types. A more detailed discussion of this topic is

beyond the scope of this thesis and the reader is referred to [122]

2.4 Presburger Arithmetic Logic

As discussed above, dependent types’ expressiveness may be utilized to encode typestate prop-

erties. The same technique can further be used for modeling and verifying richer typestate

properties. The p-typestate type system discussed in Chapter 5 employs this concept. Unfortu-

nately, typechecking cannot be automated for the most expressive general dependent types as

mentioned before, thus we restrict the language for dependent types’ parameters to a decidable

logical family of Presburger arithmetic formulas. In this section, we present a brief introduction

to this family which will aid in the elaboration of the ideas discussed in Chapter 5.

A Presburger Logic is a First-Order [90] Logic of (N, <,+) interpreted over N = {0, 1, 2, ...}.
The Logic was first studied extensively by Mojzesz Presburger in 1929 who gave a sound and

complete axiomatization and a procedure for the validity of the logic. Presburger logic allows

defining formulas over the set of Natural numbers with addition and without multiplication.

For instance, we can have formulas like:

x+ 3y + z < z + 1, ∀x∀y((x < y)⇒ ∃z(x < y < z)

The logic is not as expressive as Peano arithmetic [100], but this simplicity makes validity

and satisfiability problems for the class of Presburger arithmetic decidable [108], i.e. there

exists an algorithm that can decide if any given statement in Presburger arithmetic is true. No

such algorithm exists for the richer Peano arithmetic.

A Presburger arithmetic logical formula is formally defined as follows:

(formula) φ := φ ∧ φ | φ ∨ φ | ¬φ | ∃var.φ
| ∀var.φ | t ] t

(term) t := n | t + t | - t | n * t | var
(relop) ] := < | > | ≤ | ≥ | =
(var) var := x | y | z ...

(numeral) n := 0 | 1 | 2 ...

Table 2.2: Presburger Formula
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2.4.1 Decision Properties and Procedures

A decision procedure for Presburger arithmetic is an algorithm to decide the validity of a

Presburger formula. If an integer formula is free from quantifiers, its truth value can be easily

calculated. There are various quantifier elimination procedures for Presburger arithmetic like

Fourier-Motzkin, Omega test, Cooper algorithm etc. In our work, we use the Z3 theorem

prover [43], which has efficient implementations of these basic and other advanced algorithms

for deciding the validity of Presburger arithmetic formulas. The theory of Presburger arithmetic

is available at [108].

2.4.2 Typestates

Type systems define the set of valid or restricted operations on data. While this helps to prevent

many programming errors or proving the absence of a certain kind of programming errors, there

are many programming errors that types cannot capture. One subset of such programming

errors are those which are caused due to an incorrect state (a typical IllegalStateException in

Java) or an incorrect ordering of method calls (or function calls) over some data, for instance

calling a read operation on a File object which is not open. In the absence of a static type

checking system, these errors are mostly checked at runtime. For instance Java compiler checks

for an IllegalStateException and Array bounds checks at runtime. Typestates [115], are designed

to capture these kinds of programming errors or defects by adding a state component to the

normal types. Thus, while types define what operations are allowed or restricted on data for its

lifetime, typestates define what subset of these operations are allowed or restricted in a given

state. For instance, a typestate including the state of a File object (open, close) may let us

define a temporal ordering of properties requiring the read operation being called only in an

open state.

Another example property that requires typestate modeling, and is very common in object-

oriented programs is related to Iterators over Collections, like Iterator over a List object in

Java. A List iterator has various operations associated with it, like a boolean returning method

hasNext() and another method next(), returning the next element of the list. Now an Iter-

ator class in Java places a restriction/protocol on its usage- the next() method may only be

called when there are more elements in the container on which the Iterator is iterating, else a

NoSuchElementException is raised. This is an example of erroneous usage of an API by the

programmer. Such usage protocols need to capture the states of the objects or the environment

and could be readily modeled and verified using Typestates.

The problem is acerbated in the presence of aliasing. Precise reasoning and tracking of state
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changes in such a system must be aware of all the aliases to a reference, in order to soundly

track the current state. This is a challenging problem, as the state change occurring in one

context via a reference may not be visible to other aliasing references in some other context.

For instance, one alias might be depleting an iterator while another might still believe that the

iterator has a value through a previous call to hasNext(). Such errors are really hard to debug,

as failure is separated from the point of detection by the runtime system in both space and time,

and the stack trace emitted for the failure provides no information on the other calls that have

been made recently on the object, or why the local assumptions about the state of the object

are incorrect. There are some useful works [53] which integrate a static alias analysis with

static typestate analysis. The idea is to have a sound (maybe imprecise) alias analysis feed the

aliasing information to the typestate analysis. This solves the aliasing problem discussed above.

There are other approaches for managing aliases and capturing them statically, we discuss one

such approach based on permission system in Chapter 5. Thus typestate is an important

programming language concept to track and verify regular, private state and state mutation

related properties of programs which could not be captured using constant non-mutating type

systems.

2.4.3 Counter Automata/Machines

A k-counter automaton is a finite automaton augmented with k integer counters associated

with the machine. The machine has a two-way read-only input head. In each transition, the

machine can independently increment or decrement the counters and compare them against 0

and can move the input head left or right.

Definition 2.1 Multiple Counter Automaton A multiple counter automaton is a tuple 〈Q,C, δ ⊆
Q×G(C,C ′)×Q〉 where

• Q is a finite set of states with a distinct initial state.

• C is a finite set of counter variables (These can be integers or natural numbers). C’ is

the primed version of C representing the changed value of C.

• G (C, C’) is the set of guards built on alphabet C, C’. A member of G (C, C’) is a

Presburger formula as defined earlier.

Figure 2.7 shows an example of a simple counter system with a single control state q0 and

two transitions t0 and t1. Each transition has associated guards g0 and g1 respectively.

A configuration s of a multiple counter system is described not only by the control state

of the system but also by the values of these finitely many counters associated with each
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q0start

t0 : g0 := (i ≤ N ∧ ns ≥ ne ∧
ns′ = ns+1∧ne′ = ne∧i′ = i+1)

t1 : g1 := (i ≤ N ∧ ns ≥ ne ∧
ns′ = ns ∧ ne′ = ne + 1 ∧ i′ =
i+ 1)

Figure 2.7: A multiple counter automaton with single state and two guarded transitions

state. For example, a possible configuration for the counter automaton of Figure 2.7 can be

(q0, {i = 0, ns = 2, ne = 1}). The transition relation δ, makes a transition based on the current

configuration and the guards to a new configuration.

The semantics of a counter system is defined as follows. A transition t ∈ δ represented as

s → s′ over the states of the system is allowed if the state s satisfies the guards gt associated

with the transition. The state s′ (s) is termed as the immediate successor (predecessor) of s (s′).

A counter system can be deterministic or non-deterministic, either due to a single transition

or a set of transitions from a state.

What makes counter system/automaton so interesting is the expressive power of this ma-

chine. A 2-counter machine (A counter system with two counters) can simulate a stack and

since a two stack machine can simulate an arbitrary Turing machine, it follows that a 4-counter

machine can simulate a Turing machine. This expressiveness comes at the cost of decidability.

The set of reachable states for a multiple counter automaton is possibly infinite and hence

cannot be enumerated. Thus finding the set of all the reachable states for such systems is un-

decidable in general, thus making normal approaches to model checking moot. Safety analysis

of these systems require symbolic model checking.

2.5 Verification of Infinite State Systems

The p-typestates work discussed in Chapter 5 presents a novel loop invariant calculation for

Presburger-definable loops. The approach uses acceleration techniques from the symbolic model

checking domain of infinite state systems. In this section, we present the required background
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knowledge about model-checking, symbolic model-checking, verification of infinite state sys-

tems, etc. These ideas will aid in better comprehension of the underlying principles of the loop

invariant calculation approach discussed in Chapter 5.

2.5.1 Model Checking

Formal verification methods are used to prove the correctness of software systems. This aids in

reducing the high cost of correcting errors in these systems at the same time provide guarantees

crucial for safety-critical systems. There are many formal methods of verifying systems [35,

105, 45] and each of these methods have three basic elements, a mathematical model of the

system to be verified, a formal language for specifying and formulating the correct and incorrect

behavior of the system and a procedure or an algorithm to verify the correctness of the system.

Model checking is one such formal method of verification, introduced by Clarke and Em-

merson [35]. Model checking determines the truth value of a formula representing the correct

or incorrect behavior in a specific finite model of the system. This requires an exhaustive

search of the explicit state space of the system. The number of explicit concrete states in the

model of many systems (like concurrent systems) can grow exponentially. This is termed as the

state space explosion problem, which makes explicit state exploration techniques ill-suited for

infinite-state systems. Since, a large fraction of real-world systems and properties of interest are

beyond the finite state model, verifying safety and other correctness properties of infinite-state

systems is an active area of research [27]. These research works allow to verify properties of

models like pushdown systems [49, 21], counter systems [37, 54], etc. One such solution in the

literature to handle the state space explosion problem is symbolic model checking [15].

2.5.2 Verification of Infinite State Systems

The explicit state space exploration approach of model checking is not applicable for infinite

state systems. Thus verification approaches for such systems must be based on symbolic ex-

ecution since it is possible to manipulate some finite symbolic representation of the infinite

state space. This approach is called, symbolic model checking. There are various tools for

checking the reachability properties of infinite-state counter systems based on symbolic model

checking. [54, 11]. Symbolic model checking for infinite systems although tractable is hindered

by the problem of convergence. The next subsection describes the problem and presents a

technique to handle the problem effectively.
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2.5.3 Acceleration

The problem of calculating the set of reachable states (REACH) for an infinite state system is

undecidable in general. Thus, model checking infinite state systems uses a “symbolic” approach

which involves abstracting a symbolic model of the model checking problem and manipulating

it to calculate fixpoints for forward and backward reachability sets. A naive fixpoint calculation

for these infinite systems may diverge in general and thus has a low probability of termination.

Acceleration [15] is a popular technique which makes the convergence of the fixpoint calculation

for such systems more frequent. The technique is analogous to abstract widening operation from

the abstract interpretation domain.

Definition 2.2 (Acceleration over a path π) Given a transition system T = 〈Q,Σ,Ψ, δ〉
and a sequence of action π ∈ Σ∗. Acceleration of π over T is called π -acceleration and is

defined as a relation Accπ ⊆ (Q × Q) such that (s, s’) ∈ Accπ iff ∃k ∈ N. such that s
πk−→ s’,

where s
πk−→ s’ represents a path (s

e1−→ s1
e2−→ s2... sk-1

ek−→ s’) of k consecutive transitions in

the system in δ. We say that s’ ∈ postT(π∗, s) or simply post∗(s), where postT(π∗, s) represents

the set of post reachable states by the acceleration of π over T, starting from the initial state s.

The definition could be extended to a set of starting states S, by calculating post∗(s),∀s ∈ S.

The acceleration relation Accπ is called π acceleration or just acceleration when the context is

obvious.

According to the property of the paths being accelerated, an acceleration defined above can

be refined to either loop acceleration, flat acceleration or global acceleration. The details of the

acceleration techniques can be found in [54]. A model or a system supporting a global acceler-

ation implies that it supports flat and loop acceleration. Similarly, supporting flat acceleration

implies support for loop acceleration. Accordingly, the complexity of the procedure for their

computation grows contra-variant. Please refer Chapter 5 for a more detailed description of

acceleration techniques and its application to loop-invariant calculation.

We model the loop invariant calculation for a program enforcing a p-typestate property

as REACH finding problem over the counter system induced by the looping construct in the

program. This reduction allows us to use known acceleration based reachable states computa-

tion approaches and tools. The reduction is straightforward, Presburger formulas over integer

variables of the counter system for the input loop forms the symbolic domain. The acceleration

of the loop calculates a Presburger definable formula representing the REACH set for the input

loop with the given initial set of states. We use this formula as a loop invariant in p-typestate

type checking to generate a modular proof of correctness of the program.
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2.6 Chapter Summary

In this chapter, we presented a brief introduction to some of the important preliminary and

background required to easily understand the technical contributions and ideas discussed in the

rest of the thesis. We began with a brief background of Android applications, static analysis in

general, and particularly in the context of an Android application. This was followed by a brief

introduction to a background on types, type systems and richer type theories like dependent

types. We also discussed mathematical logic and logical families like Presburegr arithmetic.

This was followed by a small discussion about verification of infinite-state systems. These

background topics will help to understand the ideas discussed in Chapter 4 and Chapter 5.
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Chapter 3

Related Work

We propose programming language based, static approaches to verify rich typestate-like safety

properties over complex programs in this thesis. This includes two major components, first, an

asynchrony aware static analysis for event-driven programs like Android applications and sec-

ond, a generalized notion of typestate, called parameterized typestates (p-typestates) to specify

and verify typestate properties beyond the regular language domain. We mentioned these con-

tributions in Chapter 1 by depicting them along two axes of “richness of typestate property

(φ)” and the “complexity of the programs being verified (P)”. In this chapter, we discuss the

most closely related works along both these axes and a few others which are related to the

general static analysis, type systems, typestate analysis and analysis of Android applications.

This is by no means an exhaustive list of related works but gives sufficient understanding of

the state-of-the-art in research in related fields.

3.1 Modeling and Static Analysis of Android Applica-

tions

3.1.1 Operational Semantics for Android Activities

Payet et al. [103] present operational semantics for Android Activities along with the semantics

for the Dalvik instructions. The work defines a core simplified Dalvik instruction set and

presents the semantics as transformations over states of the Dalvik Virtual Machine. Each

state of the machine is depicted as a tuple 〈r | π | µ〉 of registers, stack of pending activity

calls and heap respectively. A heap representation maps locations into objects. An object is a

function that maps its fields into values and that embeds a class tag k. Such an object is called

to be belonging to class k.
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Apart from the basic instructions set, they further define a set of macro-instructions which

tries to capture the semantics of Android Framework API methods like startActivity, findView-

ById, setResult, etc. The semantics of these macro-instructions are defined in terms of state

transitions. An activity has an associated state, which basically captures which lifecycle call-

back of the activity is being executed. An activity state is an element of the set containing all

possible lifecycle callback methods of the Activity class.

{constructor, onCreate, onStart, onRestart, onResume..., onDestroy}

Lifecycles associated with an activity is represented as a set of binary relations over these

activity states. An activity frame is a tuple 〈l | s | π | α〉 used to manage an activity a in an

activity stack. l is the location of a on the heap, s is the current state of a, π is an activity

set defining activities that are waiting to be launched from a and α is a method stack used for

managing the execution of a callback method corresponding to s.

This work presents the first formal semantics for selected Android control flow features. This

can be utilized by static analyses to precisely capture the lifecycle semantics of Android appli-

cations. However, the semantics presented in the work have certain limitations. The semantics

has no way of capturing the asynchronous nature of ICC in Android, and the interaction with

the Android system is also imprecisely modeled. For example, although representing lifecycles

as binary relations and then defining semantics for lifecycle, captures how the control might flow

in a component, the operational semantics are not well designed to capture precise control flow

semantics caused by the interaction between lifecycle callbacks and the inter-component com-

munications (ICC). Correctly modeling such interactions is crucial for a precise static analysis

of Android apps. Further, the semantics for other application components cannot be defined

easily using the given semantics. For instance, the set of macro-instructions, and their seman-

tics, presented in the work, are not complete and newer instruction sets are needed separately

for ICC and lifecycle API of other component types. Extensive usage of API for control flow

in Android applications makes it a challenging task to completely capture Android application

control flow using this approach. This makes the formal semantics too verbose which might be

as difficult to reason about as the original application. A simple approach can be to have a

common small, abstract set of ICC and life-cycle semantic rules for each component types and

modeling the control flows using an intermediate control flow graph representation. This is the

approach taken by our asynchrony-aware static analysis work discussed in Chapter 4.
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3.1.2 Formal Modeling and Reasoning about Android Security Frame-

work

Armando et al. [12] presents a formal model for the Android Security Framework or the An-

droid Security Architecture. The work models the Android architecture, i.e., the Android stack

(refer Chapter 2), Android applications, and interactions between applications and the An-

droid Framework. This provides a language needed to describe security-relevant aspects of

the Android Security Framework. The work provides a high-level abstraction for an Android

application, its components, resources, manifest, permissions, Intents, granting and revoking

dynamic permissions, etc.. It provides operational semantics presenting the computation of

a Component in a given context. These constructs and associated semantics are suitable for

modeling creation of resources, components, checking capabilities and other properties related

to access control in Android applications. Unfortunately, the model cannot capture control flow

semantics in Android applications, such as asynchronous call semantics, component lifecycles

and other callbacks, and possible interaction between asynchronous calls, ICCs and lifecycles.

The Android application and control flow semantics provided by us in Chapter 4 aptly capture

these features in Android applications and aids in sound static analysis of these applications.

Fragkaki et al. [57] present a formal model of the Android permission system and a formal

framework for analyzing and verifying Android style (permission based) security properties

related to integrity and privacy of application and user’s data. The work further presents an

implementation of a property enforcement system called SORBET which provides the required

language to specify flexible security policies and a system to enforce these policies. This work

extensively increases the expressiveness of android access control based permission system by

allowing to enforce richer coarse grained security policies related to privilege escalation [42] and

information flow [13, 76, 46]. Our formal model and semantics of Android application is used

to define an intermediate representation for Android applications which soundly captures all

possible asynchronous control flows in Android applications.

3.1.3 Other Formal Studies of Android Applications

There is a plethora of works on formal modeling and studying/analyzing Android framework

and applications. Smith et al. present a formal model of a subset of Android applications

in the ACL2 theorem prover [94]. The work then builds and proves useful properties over

these modeled applications. This work is more along the lines of another important formal

work [67], which provides a formal model of Android applications and uses symbolic execution

over the model to prove useful application properties. These works differ significantly from
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our modeling of Android. Our Android application model explicitly captures the asynchronous

control flow Android due to asynchronous calls, call-backs, lifecycles, and other framework

induced asynchrony, while these works either try capturing the high level structure of Android

applications, and its security framework, or are interested in modeling the Dalvik instruction

level semantics to utilize it for symbolic execution. Further, none of these works captures the

asynchrony semantics in Android, which is important to soundly and precisely track many

useful properties over Android applications as exhibited by us empirically in Chapter 4. Chen

et al. [32], try to capture the interaction between an Android application events and permission

via an intermediate representation called Permission Event Graphs. This is an abstraction of

the events and permissions in applications, allowing them to define and verify simple temporal

properties over events and permissions. This work is orthogonal to our model of Android, and

it will be interesting to check such properties using the typestate analysis developed by us over

AICCFG. This will require adding abstractions for permissions in our model of Android control

flow. Besides these, there are several other works on Android application modeling [58], but

none of these works models the asynchronous control flow semantics in Android applications

which are the major focus of our work.

3.1.4 Featherweight Java

Igarashi et al. [65] presents Featherweight Java (FWJ), a minimal core calculus for Java’s type

system. The work aims for the compactness of the calculus against the completeness, and

captures the core of Java language and its type system, using five language expressions: object

creation, method invocation, field access, casting, and variables. One key omission from FWJ is

the assignment, each field and variable in FWJ is basically final and there is no side-effect. This

reduces FWJ to the “functional” fragment of Java. FWJ presents the core concrete syntax, a

simple type system and a static semantics (dropping side-effects allows one to define evaluation

semantics completely in the syntax of FWJ) for this functional fragment of Java. The major

aim of FWJ is two-fold. Firstly, it aims to provide a core language, over which bigger languages

can be designed with richer features. For example, FWJ work also presents an extension of

FWJ with Generics [101] called the Featherweight Generics Java (FGJ). Secondly, it aims at

providing a minimal and concise type system which can help reasoning over these programs,

and which has a concise proof of soundness. Further, since the proof of soundness for pure

FWJ is very simple, a rigorous soundness proof for even a significant extension may remain

manageable. The work gives type soundness proofs for FWJ and FGJ. FWJ has aided in the

design of the typestate-oriented programming language [9] (FTS). We extend this typestate-

oriented programming with our parameterized typestates and related machinery of dependent

52



types over Presburger-defined formulas.

3.2 Static Analysis of Android Applications

3.2.1 Intra-component Information Flow Analysis

FlowDroid [13] is an intra-component information flow analysis for Android applications which

is context, flow, field and object sensitive in traditional static analysis sense. The analysis as-

sumes that all information passed across ICC is tainted, and over-approximates asynchronous

calls across components by assuming any possible ordering of component interactions. Flow-

Droid models the lifecycle associated with each component but misses some of the possible

control flows occurring due to the interactions between the lifecycles of components. Flow-

Droid presents an algorithm for precise taint analysis coupled with an on-demand alias analysis

as an extension of the IFDS interprocedural analysis algorithm [110]. The algorithm has two

tightly coupled solvers, a forward solver for taint analysis and a backward solver, which is trig-

gered on-demand for a precise alias analysis. The paper also presents a bunch of benchmark

applications called DroidBench which contains test cases for interesting static taint and other re-

lated analysis problems. In summary, the FlowDroid tool takes an application package, parses

the manifest, the dex files and the layouts to generate a main method making synchronous

calls to each component to generate a call-graph, and uses its forward and backward running

algorithms for taint analysis. The major limitation of this analysis is its inability to handle

inter-component flows as most of the real world applications have ICC across components. The

over-approximate solution is highly imprecise for a property like typestates which requires a

more precise flow-sensitive analysis as compared to a taint analysis. Moreover, the control flow

graph generated by the approach for an application misses certain possible applications control

flows, making it unsound (refer Chapter 4 for the definition of Soundness) as well.

3.2.2 Inter-component Information Flow Analysis

IccTA [76], extends the FlowDroid tool with inter-component communication analysis to find

privacy leaks. It tries to improvise over intra-component analysis of FlowDroid. IccTA calcu-

lates or extracts ICC calls and their targets (calling it ICC links) in the application and stores

these in a database. Based on these ICC links, IccTA instruments the original input application

with explicit calls to the target component at the ICC location. Let us consider an example

code fragment from the paper that handles the startActivity ICC method.

Figure 3.1 shows the original application code with the ICC call startActivity in line 13.

Figures 3.2, 3.3 shows the instrumented version of the application with a call to the instru-
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1 Intent myIntent = new Intent (action, data);
2 startActivity(myIntent);
3 //TelephonyManager telMnger; (default)
4 //SmsManager sms; (default)
5 class Activity1 extends Activity {
6 void onCreate(Bundle state) {
7 Button to2 = (Button) findViewById(to2a);
8 to2.setOnClickListener(new OnClickListener(){
9 void onClick(View v) {

10 String id = telMnger.getDeviceId();
11 Intent i = new Intent(Activity1.this,Activity2.class);
12 i.putExtra("sensitive", id);
13 Activity1.this.startActivity(i);
14 }
15 });}}
16 class Activity2 extends Activity {
17 void onStart() {
18 Intent i = getIntent();
19 String s = i.getStringExtra("sensitive");
20 sms.sendTextMessage(number,null,s,null,null);
21 }
22 }

Figure 3.1: An example application with ICC

1 // modifications of Activity1
2 Activity1.this.startActivity(i);
3 IpcSC.redirect0(i);
4

5

6 // creation of a helper class
7 class IpcSC {
8 static void redirect0(Intent i) {
9 Activity2 a2 = new Activity2(i);

10 a2.dummyMain();
11 }
12 }

Figure 3.2: Instrumentation by IccTA for ICC

1 // modifications in Activity2
2 public Activity2(Intent i) {
3 this.intent_for_ipc = i;
4 }
5 public Intent getIntent() {
6 return this.intent_for_ipc;
7 }
8 public void dummyMain() {
9 // lifecycle and callbacks

10 // are called here
11 }

Figure 3.3: Instrumentation by IccTA for ICC
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mentation method IpcSc.redirect0(i), which creates an explicit instance of the target component

Activity2 and calls the dummymain (entry point for the component) for the target. This gives

a whole-application control flow graph for the application, which IccTA uses to run a normal

IFDS taint analysis. The work is closely related to another similar work, AmanDroid [125]

which also presents a similar inter-component static analysis for Android applications. These

works efficiently capture many privacy leaking paths in applications but suffer from serious

limitations. Inter-component communications, and lifecycle and other callbacks in Android ap-

plications have asynchronous calling semantics. This means that the caller does not block for

the callee to complete, and proceeds with its execution according to the non-preemptive lifecycle

callback execution semantics while the asynchronously called method is queued for dispatch by

the scheduler (ActivityManager Service in Android) and is executed some later time. Although

these works capture these ICC calls and returns, they incorrectly model them as synchronous

calls. The asynchronous call and return semantics become relevant to the soundness and pre-

cision when a static analysis needs to track a property of some global data as the value of the

global data flow fact might change between the call to the target component and the actual

dispatch. Moreover, the effect of unsoundness is magnified due to the interactions between the

control flows due to ICC and lifecycles. We present a sound asynchrony-aware static analysis

approach for Android applications to mitigate these and other limitations of state-of-the-art

static analysis approach for Android. The details of the approach are discussed in Chapter 4.

3.2.3 Other Static Analyses for Android Applications

There is a plethora of other static analysis works for Android which prominently aims to

extend normal static analyses for Java applications to Android applications. [58, 77], while

a few others try to analyze Android applications for specific properties like inter-application

communications [33], applications collusion attacks [128], privilege escalation attacks [42], etc.

There are several good surveys [77] about static analysis for Android applications, and interested

readers should follow some of these. All these works treat Android applications as a variant

of Java applications with specific challenges to analyze. Although some of these as discussed

here aim at modeling the life cycles of the components, none of these correctly model the

asynchronous control flow semantics of these applications which is inherent in ICC and event

callbacks.

3.3 Static Analysis of Asynchronous Programs

Jhala et al. [68] present a formalism for the interprocedural analysis of asynchronous programs

using the IFDS [110] approach for similar analysis over synchronous programs. The approach
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is called Asynchronous IFDS or AIFDS. For programs with no asynchronous function calls, the

interprocedural data flow analysis [110, 80] forms a general framework for the program analysis.

Unfortunately, the IFDS approach is not applicable to the programs with asynchronous function

calls and returns. For instance, consider Figure 3.4 adapted from the paper, which shows an

asynchronous program Plb called from an event-driven load balancer. Such asynchronous calls

and callbacks are extremely popular for event driven programs like Android and other mobile

OS applications. Execution begins in the procedure main which makes an asynchronous call

to a procedure textsfreqs (line 4), that adds requests to the global request list r, and makes

another asynchronous call to a procedure reqs (line 9), that processes the request list. The reqs

procedure checks if r is empty, and if so, reschedules itself by asynchronously calling itself. If

instead, the list is not empty, it allocates memory for the first request on the list, makes an

asynchronous call to client (line 16), which handles the request, and then (synchronously) calls

itself (line 18) after moving r to the rest of the list. The procedure client handles individual

requests. It takes as input the formal c which is a pointer to a client t structure. In the second

line of client the pointer c is dereferenced, and so it is critical that when client begins executing,

c is not null. This is ensured by the check performed in reqs before making the asynchronous call

to client. However, we cannot deduce this by treating asynchronous calls as synchronous calls

(and using a standard interprocedural dataflow analysis) as that would additionally conclude

the unsound deduction that r is also not null when client is called.

The work tackles this unsoundness of applying synchronous only interprocedural analyses to

asynchronous programs. It creates an asynchronous control flow graph for the whole program

and defines a special node called as the dispatch node modeling the asynchronous call dispatcher

in the asynchronous control flow graph of the program. The analysis records the pending asyn-

chronous calls with local and global data values at the call location as data flow facts. The

work then presents an algorithm to precisely calculate the meet over all valid paths in the asyn-

chronous control flow graph for the program. The algorithm converts an AIFDS instance into

an IFDS instance over the lattice of cross products of number of pending asynchronous calls

and the local data flow facts at the call points. Since the set of pending asynchronous calls

with local data flow facts is potentially infinite, IFDS is not directly applicable. The approach

abstractly counts the number of such calls and then calculates over and under-approximate so-

lutions for the exact AIFDS approach. They prove that the approach is guaranteed to converge

to the exact solution.

Our static analysis implementation in “asynchrony-aware static analysis work for Android

applications” is built upon this static analysis work. We extend the AIFDS approach to Android

applications by correctly modeling the asynchronous control flow semantics in Android Inter-
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1 global request_list *r;
2 main(){
3 ...//setup request list r
4 async reqs();
5 ...//dispatch loop
6 }
7 reqs (){
8 if(r == NULL){
9 async reqs ();

10 return;
11 }
12 rc = malloc (...);
13 if (rc == NULL){
14 return ABORT;
15 }
16 async client (rc, r -> id);
17 r = r -> next;
18 reqs();
19 }
20 client (clien_t *c , int id){
21 ...
22 c -> id = id;
23 ...// comtinue processing
24 return;
25

26 }

Figure 3.4: Example : Asynchronous program from [68]

Component Control Flow Graph (AICCFG) and further extending the Asynchronous Data Flow

Algorithm (ADFA) [68] to handle Android component lifecycle semantics and inter-component

communications. For instance, Android ICC calls have complex runtime semantics and lack

explicit asynchronous calls and returns. The asynchronous calls are either due to ICC or

callbacks from the framework to the application. Moreover, these are asynchronous calls to a

collection of callback methods rather than a single target method, which needs to be resolved

either explicitly or by using the manifest. Once the target is resolved, all the valid paths should

be invoked based on the called component type and its lifecycle. Chapter 4 discusses the details

of our analysis.

3.4 Static Typestate Analysis

3.4.1 Classical Typestate Analyses

3.4.1.1 Original Typestates

Typestate tracking or static typestate analysis was first defined in the seminal work by Strom

and Yemini [115]. Since then, there have been various attempts to statically verify or check

typestate properties of programs from different domains. Since typestate tracking requires

tracking temporal safety properties of a program, it requires sound (refer Chapter 4 for the
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definition of soundness) tracking of both control and data flow of the program. Moreover,

for practical purposes, the approach should be substantially precise. This work presented the

concept of typestates as an extension to the concept of types. It aimed to find nonsensical

program executions in programs, like using a variable without prior definition, reading a closed

file, etc. This is achieved by associating a states set with each type in the program. This set

is defined as typestates, and each procedure of the language has a Pre and a Post typestate

set which captures possible typestate automata transitions. The work presents a two pass

typestate tracking algorithm which takes a program graph without typestate labels, and it

inserts typestate labels and coercions. It produces a typestate consistent program graph if the

program does not violate the related typestate property. The work also discusses how typestates

affect various features of a programming language by taking an example of a small programming

language NIL [116]. The work discusses the challenges associated with tracking typestates in

real-world programs with rich programming features like Pointers and aliasing but abstracts

away these features in NIL. Most of the real world imperative programming languages like Java,

C or C++, extensively support pointers or references and aliasing, and this is a major hurdle in

precisely tracking typestate properties of these programs using the approach described in the

paper. Besides the problem of aliasing and dynamic memory allocation, the original typestates

can only express finite state abstraction properties. Unfortunately, many of the real world

programs require checking much richer properties which are beyond regular languages. The

first limitation is addressed by various works which present typestate tracking algorithms and

approaches for programs in the presence of aliasing [53], but these works are still limited in scope

because they apply the known IFDS approaches to typestate analysis which are both imprecise

and unsound for programs with richer features. The second limitation is still unresolved and

we present a generalized version of typestates which can express and verify such richer program

properties.

3.4.1.2 Typestate Analysis in the Presence of Aliasing

Fink et. al. [53] present a verification technique for typestate properties in real-world Java

programs. The work presents a range of typestate verification techniques with varying degrees

of precision and uses these for a staged typestate verification. The work presents a typestate

analysis framework which allows one to formally define different levels of abstraction and pre-

cision. It presents an integrated typestate and alias analysis built over this framework. The

work is related to typestate tracking work for objects [82], but differs from our work on various

counts, the most significant one being the ability to deal with non-regular program properties.

Many of the approaches to handle aliases in this work could be useful in our typestate system
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as well and we discuss briefly one of these in chapter 5.

3.4.2 Typestate Analysis for Android

Android application framework exposes a large set of APIs for Android applications to inter-

act with the device hardware, resources and other applications. Most of these API’s have an

associated usage constraints or protocols. Most of the static analysis research for Android ap-

plications is directed towards information flow and other security relevant problems. This may

be attributed to the difficult challenges associated with precise tracking of typestate properties

in the case of Android applications. Ours is the first static typestate analysis work for Android

applications. The details are discussed in Chapter 4.

3.5 Language support for Typestate

3.5.1 Typestate for Objects

Typestates are particularly useful in capturing state based properties in imperative object-

oriented languages where the states of objects mutate over time. In “Typestate for Objects” [82],

Deline et al. present a sound, static typestate system for imperative object-oriented programs.

They present a modular typestate system soundly capturing the typestate change semantics

due to inheritance in object-oriented programs. The work contributes to typestate analyses in

distinct ways:

first, the work presents a modular typestate system (a type system for typestate). This

typestate system captures object’s state as a function of contents of the fields of an object.

At any time the object can be typed either as a superclass, the current class or any of its

subclasses. Statically, the type checker can only know about the fields of the superclass or the

object’s declared class. Thus, some object states introduced by its subclasses are unknown.

Typestates are good for capturing such program states in a modular fashion since they abstract

away the details of subclass fields and only keep track of object’s state by static names. The

approach allows a clear description of how subclasses can extend the interpretation of typestates

and language features like upcast, downcast, etc. To achieve this, the work defines typestates

associated with an object as a set of frame typestate, one for each class frame of the object’s

dynamic type. It provides a uniform abstract frame for each unknown subclass. For example,

the work defines an object typestate σC as follows:

(Object typestate) σC := χC :: rest @s | χC :: •
(frames) χC := χB :: C @ s where B = baseClass(C)

| Object@s where C = Object
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The above definition states that, an object typestate σC is a collection of frame typestates

χC and either a rest typestate s (specifying that all possible subclass frames of C satisfy s), or

no rest state indicating that the dynamic object type is exactly C (for example, right after new,

or because class C is restricted from having subclasses, as with abstract classes in Java ]). A

collection of frame typestates χC consists of a frame typestate for frame C and each supertype

of C. Class C in an object typestate σC corresponds to the traditional static type of an object.

Besides a modular typestate description for objects, the work also presents typestates as

a generalization of object invariants. It looks typestates as a different invariant of an object

over its lifetime and defining typestate changes via annotating each method with Pre- and Post-

typestates. Further, the typestate system allows transitioning object invariants and incremental

state changes. The work also provides a small, imperative, object-oriented core language with

a static typestate system implementing the modular typestaes of the work.

The typestate system discussed in this work suffers from expressive limitations common

to other regular typestate works. It can only express regular typestate properties. Moreover,

the work does not provide any concrete implementation of their theoretical typestate system.

Our p-typestates work tries to address some of these limitations by giving a more expressive

notion of typestates, a richer type system and a concrete implementation of a typestate-oriented

language with the p-typestate type system. It is important to note here that our p-typestate

definition is not modular in the exact sense of object frames as discussed in this work.

3.5.2 Typestate oriented programming

Typestate oriented programming [9, 31], introduces concept by formalizing a nominal object-

oriented language with mutable states, that integrates typestate change and typestate checking

as primitive language concepts. Most of the other imperative languages like Java, C++, Python,

etc. cannot express typestates directly. Typestates and typestates tracking are encoded through

a disciplined use of member variables or fields. For instance, consider the FileManager example

discussed earlier. The state of the file can be encoded in a field of a File object, which can be

null for closed file and non-null for open ones. Such an encoding of typestates makes it difficult

to comprehend or debug these programs. Comprehension is hampered because the protocols

underlying the typestate properties, which reflect a programmers intent, are at best described

in the documentation of the code. Also, such typestate encodings cannot guarantee by con-

struction that a program does not perform illegal operations. Checking typestate violations

can be done through a whole program analysis [53], or with a modular checker based on addi-

tional program annotations [18]. In either case, the lack of integration with the programming

language hinders adoption by programmers.
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Although, there are a few indirect ways to encode typestates and typestate transitions via

types (by allowing type associated with a term to change during its life), using standard type

systems(which remains constant during object life), we cannot naturally specify and verify

dynamic behaviors of the program described by typestates. On the other hand, providing

the programmer with a rich logic and a language for writing pre- and postconditions quickly

becomes undecidable. For instance, the ESC/Java System [56] allows rich specifications to

model dynamic typestates like properties but has an undecidable static type checking in general.

Garcia et al [9] presents the foundational concepts for a typestate-oriented programming

language which directly supports typestates and typestate transitions. The language design

incorporates typestates as first-class objects. It defines a statically typed core language called

Feather Weight Typestate (FT) inspired by a core object-oriented language called Feather

Weight Java(FWJ). The work further presents a gradually typed extension and practical im-

plementation of FT called as Plaid. Plaid [31] language allows to define mutable states similar

to classes in a normal object-oriented language and has both static and gradual typestate check-

ing. Although, in our experience, Plaid predominantly checks typestate properties at runtime.

Each method has pre- and post- typestate annotations which capture typestate transitions and

can be verified statically or dynamically. For example, the following signature for a method m,

describes typestate transitions for fields f and g.

void m(OpenFile� CloseF ile f,OpenFile� OpenFile g){...}

Figure 3.5 presents a code fragment for a small logging example, the code is adapted from [9].

The OpenFileLogger (OFL) state holds a reference to a file object (OF) and provides a method

(log) for logging to the file object. When the logging is complete, the close method closes the file

and transitions the state of the base object from OFL to FL. Plaid provides syntax to annotate

pre- and post- states showing possible typestate transitions associated with a method. For

example, consider the close method in the figure. It requires the pre- state of the FileLogger

object to be opne (OpenFileLogger) and updates the post state to not open (FileLogger). This

transition is shown as close () [OFL � FL]. The client code, has a staticLog method which

requires an open FileLogger, and finally, the logger is closed. The states of a typestate property

automaton are represented as Types (a state is a type with the same name). These and other

features of Plaid [31] allow one to model and verify useful typestate properties directly in the

program. One particular limitation of Plaid’s typestate and the type system is, that it can

only express regular program properties. Thus, we can easily express and verify a property

like the FileLogger but cannot express a non-regular property like, “Number of read operations
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1 class FileLogger { /* FL Logging related data and methods */ }
2

3 class OpenFileLogger : FileLogger { /* OFL */
4 OF file;
5 void log(string s)[OFL] {...}
6

7 void close()[OFL � FL] {
8 full(OF) OF fileT = (this.file :=: new OF("/dev/null"));
9 fileT.close();

10 this ← FileLogger();
11 }
12 }
13

14 // Client code
15 void staticLog(OFL logger) {
16 logger.log("in staticLog");
17 }
18

19 OF file0 = new OF(...);
20 OFL logger = new OFL(file0);
21

22 staticLog(logger);
23 logger.close();
24 }

Figure 3.5: An example program in Plaid

to a file are greater than the number of write operations ”. The p-typestate work presented

in Chapter 5 particularly addresses this limitation of regular typestates and typestate-oriented

programming languages like Plaid, Fugue [82], Plural [18], Hanoi [89], and frameworks for

typestate analysis [20]. Our work builds upon the implementation of Plaid. We could have

implemented our typestate system over a more basic core language like FWJ equally well, but

since Plaid is specifically tied to typestates, using Plaid as base explicitly allows us to present

the expressiveness of our richer p-typestates.

Next, we discuss some of the other works for modeling and verifying typestate properties.

Each of these works suffers from similar expressive limitations of the typestate and the type-

checking system as are being suffered by Plaid and “typestate for objects” [82].

3.5.2.1 Plural

Plural [18] from Aldrich et al. provides another typestate-oriented type system and an auto-

mated static analysis to modularly analyze various typestate properties of programs. This is an

extension to the object-oriented paradigm where the objects are modeled in terms of their states

and state changes along with the classes. The Plural system extends the earlier mentioned De-

line et al. work on “typestates for objects” [82]. Plural uses the Java Specification Language

to annotate methods and fields with pre and post states (using annotations like guarantee, re-

quires and ensures). These annotations allow checking each method separately and inductively
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build a modular analysis for the overall program. Thus, effectively, Plural’s annotation system

and the permission system is closely related to the Plaid’s typing annotations. However, the

Plural system does not alter the runtime representation of classes in any way and the analysis

is purely static, while Plaid provides gradual typing and dynamic state changes for objects.

The Plural’s annotation system suffers from expressive limitations similar to that of Plaid, and

cannot express non-regular typestate properties.

3.5.2.2 Clara

Clara [20] by Eric Bodden is a framework for implementing hybrid (static and dynamic) types-

tate analyses for Java programs. The framework decouples runtime monitoring from the static

analysis components. The user of the framework needs to define a set of runtime monitors for

the typestate property being analyzed. This is generally done using a runtime monitoring tool,

which generally generates simple AspectJ [124] aspects. The tool also needs to generate special

annotations to the aspect which are used by the static analysis component to invoke or disable.

The generated aspects are then weaved by CLARA into the program while the static analysis

component analyzes and invokes these runtime checks at instrumentation locations which are

relevant to the typestate property being checked and which are not being verified by the static

analysis. This gives CLARA an optimized instrumented program that updates the runtime

monitor only at locations that remain enabled.

Besides these works, there are a few other works [89, 96] on typestate verification and other

aspects of typestates. The major difference between any of these regular typestate works and

our parameterized typestates work lies in the expressiveness of the system and purely static

verification. It will be interesting to apply the concepts discussed in some of these works, like

gradual typechecking to p-typestates. This may allow us to express richer properties and reduce

the annotation burden from the programmer but will increase the runtime cost of the programs.

We leave such extensions as possible future work.

3.5.3 Extended Static Checking for Java

Extended Static Checking (ESC) [56], has the common goal of lightweight programming ver-

ification much like typestates. The work provides programmers with a property specification

language and performs an extended static checking of these properties, in the sense that it

allows specifying and verifying richer properties than normal type systems and type checkers.

The static checker uses verification condition generators and automatic theorem provers. The

work allows annotating methods and field declarations with automatically checkable annota-

tions. For instance, a requirement that a field input should not be null in a method body can
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be represented via an annotation like:

//@requires input 6= null

The annotation language also allows to specify richer constraints and annotations like:

//@invariant0 ≤ size, size ≤ elements.length

ESC [56] gives an expressive static checking mechanism, but the expressiveness comes at the

cost of decidability of static checking. The static checking system of ESC is undecidable.

Further, the static checking discussed in ESC is unsound in the presence of loops, unless the

loop invariants are provided by the programmer. Contrary to this, our aim is to have a static

type system which is sufficiently expressive to verify important non-trivial program properties

and yet has a decidable typechecking and inference (in practical cases). The details of how our

work overcomes some of these limitations are presented in Chapter 5.

3.6 Fully Dependently Typed Languages

Coq, Agda, Caynene [117, 98, 14], etc. are languages or theorem provers with full dependent

types support along with parametric types. This means they fully capture Per Martin Löf’s

type theory [22]. Availability of dependent types makes these languages highly expressive

as dependent types can also be used to represent predicate logic. Under the interpretation,

called “propositions as types” (refer Chapter 2), the operations on dependent types relate to

quantifiers in predicate logic. For instance, if φ(a) is a proposition dependent on a ∈ A, then

an element of the dependent product Πa∈Aφ(a) consists of a function assigning, to each a ∈ A
an element of φ(a), i.e. an assertion that φ(a) is true. This allows us to specify and prove

any predicate logical properties in these languages. For instance, dependent types allow types

encoding of a sized list with integer length as the dependent index. Thus we can define types

such as List(4), a List with size 4 or types like Tree(n), a Tree of height n. Dependent function

types further allow to define a refinement of these types [112, 127], defining some invariants

over the indexes capturing the length (or other similar properties) of the data. For example,

using dependent types we can eliminate the need for runtime checks for array-bounds, enforcing

the invariant over the index i being accessed in an array and the size of the array:

get : Π(size : nat).Πi{i : int, 0 ≤ i ≤ size}.Int(i)→ List(size)→ element
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Listing 3.1 presents a code fragment showing a SizedList in the syntax of our language. It

uses dependent types (from the p-typestate type system) to define a List with a dependent

type SizedListTy parameterized with integer n and a normal List. The list has two fields: a

head of the type SizedCons, which is a constructor for a sized element and a tail of the type

SizedList. The size information associated with the List allows definition of statically verified

basic methods of SizedList. For example, the prepend method takes a List element elem as

a parameter and updates the List size from n to (n + 1) by adding the elem to the head of

the SizedList. The more interesting method is the get method. It takes a BoundedInteger type

index (a BoundedInteger is a type for an integer with bounds). The method is undefined for

indicies greater than or equal to the size of the SizedList n and returns the element at the index

otherwise.

Listing 3.1: An example of SizedList using dependent types in our language syntax

1 package plaid.iisc.lang;

2

3 /* @author- Ashish:

4 * @description - SizedList - A List with size information in the type.

5 */

6 import plaid.iisc.lang.testing.test;

7

8 // head : ListCell , tail : List

9 state SizedList case of List{

10 type SizedListTy : Pi (n) -> List;

11 var SizedCons head;

12 var SizedList tail;

13

14 method void prepend(elem)[unique SizeListTy(n) -> List >> unique SizedListTy(n+1) -> List]{

15 this.head = new SizedCons {var value = elem; var SizedCons next = this.head;};

16 this <- SizedListTy(n+1) -> List;

17 }

18

19 method void add(elem)[unique SizedListTy(n) -> List >> unique SizedListTy(n+1) -> List]{

20 this.tail = new SizedList {var head = new elem; var tail = new plaid.lang.NIL;};

21 this.tail = new Cons {var value = elem; var next = new plaid.iisc.lang.NIl;}; //

define a size aware cons

22 this <- SizedListTy(n+1) -> List;

23 }

24 method void append(unique SizedListTy(m) -> List list)[unique SizedListTy(n) -> List >>

unique SizedListTy(n+m) -> List]{

25 match (list.tail){

26 case Nil{

27 this.tail = this.tail.add(list.head);

28 this <- SizedList(n+1) -> List;

29 }

30 case Cons{

31
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32 this.tail = this.tail.append(new Cons {var value = list.head.value; var next

= list.tail;});

33 this <- SizedList(n+m) -> List;

34 }

35 default{

36 java.lang.System.out.println("bad");

37 }

38

39 };

40

41

42

43 }

44 method get(unique BoundedInteger(i, i < n) -> plaid.iisc.lang.math.Integer index)[unique

SizedListTy(n) -> List]{

45

46 var returnValue = new plaid.iisc.lang.Nil;

47 var counter = 0;

48 this.map(fn (x) => { /* map is a normal map function defined over List */

49 if(counter == index){

50 returnValue = x;

51 };

52 counter = counter + 1;

53 });

54 returnValue;

55

56 }

57 method reverse()[unique SizedListTy (n) -> List >> unique SizedListTy (n) -> List]{

58 match (this){

59 case Nil{

60 this;

61 }

62 case Cons{

63 new Cons{var value = this.tail.reverse(); var next = this.tail;};

64 }

65 default{

66 this;

67 }

68 };

69 }

70 method map(f){

71 new SizedList {var head = new Cons{val value = f(this.head.value);

72 var next = this.tail;}; var tail = this.mapHelper(f, this.tail);};

73 }

74 method mapHelper(f, list){ // add the support for typed variable like (SizedList list)

75 match (list.head){

76 case Cons{

77 val newHeadValue = f(list.head.value);

78 new SizedList { var head = new Cons {var value = newHeadValue; var

next = list.tail.head;}; var tail=this.mapHelper(f, list.tail)

;};

79 }

80 case Nil{
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81

82 list;

83 }

84 default{

85 java.lang.System.out.println("bad");

86 }

87 };

88 }

89 }

A fully dependent typed language can have complex indexes for types like Π(x = get(i)).T (x),

which takes the return value of the get() method as an index for another type T (x). Unfor-

tunately, this expressiveness comes at the cost of decidability of type checking, making it

undecidable for general dependent type theory. Thus, these languages or proof systems are

not well suited for fully automatic typechecking of rich program properties. Moreover, the

type theories have semi-automatic verification, where the burden of the typestate checking or

property checking is on the programmer, as she needs to provide a proof of a property. A

possible approach is to restrict the dependent terms of these languages to belong to a decidable

theory. This is semantically equivalent to defining a language equivalent to ours (minus the

p-typestate features) in these fully dependently typed languages like Coq or Agda. Further, to

achieve this, a programmer needs to build a Presburger Theory in Coq, restrict the dependent

terms to this theory and then write properties and programs in this restricted sub-language.

This encoding will be verbose and complex for a programmer to build and will further require

a proof of decidability of typecheking. Moreover, it will still lack the expressiveness to define

rich p-typestate like pre- and post- conditions and p-typestate changes.

3.7 Dependently Typed Language Extensions for Regu-

lar Types

Many useful program properties require the expressiveness of dependent type theories while

at the same time they require decidable typechecking and typeinference. This has motivated

various works which extend a language (both from the imperative and the functional domain)

with normal types to include dependent types. These languages use the power of dependent

types to define invariants associated with data in its associated type but rather than choosing

the full power of dependent types, they restrict the index language of the dependent product or

sum types to a decidable logical family. This gives a sufficiently expressive type system without

losing the decidability of the type checking. Here we discuss a few dependently typed language

extensions which are most closely related to our dependently typed core typestate-oriented

language and how they differ from our work.
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3.7.1 DML and Other Refinement Types

Refinement Types are a variant of dependent types where a type has an associated refinement.

A refinement can be any constraint or predicate over the auxiliary variables defining some dy-

namic property of the data. For example, (int (ν) {0 ≤ ν ≤ n}), represents a refinement int

type with a default auxiliary variable ν. The type represents an int with value in between 0

and n. Using such a syntax, a refinement type allows defining rich invariants over data type.

Liquid types [112], is a refinement type which allows the refinement to be a logical formula,

hence the name logically qualified types. The seminal work in refinement types is a dependently

typed extension of ML [91] call Dependent ML or DML [127]. Our core language is also in-

spired by DML and hence there are several similarities between these other refinement types

and our language. However, our work differs from these in terms of being dependent extension

of typestates, rather than of simple types (type associated with a data object remains constant

throughout its life, while typestate is allowed to transit from pre- to post-condition), the lan-

guage domain, decidability of type-checking, handling of loops and recursive data structures,

etc. For example, DML adds dependent types to ML type system. It is a functional program-

ming language, while our core language is an imperative, typestate-oriented dependently typed

language. Our loop invariant calculation technique can be useful for type-checking general

recursive functions in DML.

3.7.2 Xanadu

Xanadu [126] is an imperative version of the DML described earlier. The work although is not

related to typestates in particular but it allows the types of variables to change during evaluation

thus relating it to typestate to some extent. Xanadu provides a static dependent type system

and aims at eliminating array bound checks in imperative programs. Although closely related,

the work differs from our p-typesates work on various accounts. Although Xanadu allows

types to change during evaluation, it provides no support for specifying or verifying pre- and

postconditions of methods, expressions and arguments which forms the basis of typesate like

properties. For instance, it is hard and unnatural to model a simple FileManager protocol

requiring file being read, only in an open state. Properties defined and verified by Xanadu

can be easily specified and verified as p-typestate properties in our work. The loop invariant

calculation approach presented by us is significantly different than their approach and obviates

the need of loop invariant annotations from the programmer. Compared to this the “Master

type” based “state type” calculation for loops in Xanadu requires annotation in certain cases

or can be highly imprecise, otherwise. Besides this, we present a state/object-oriented language
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with specific issues related to subtyping, aliasing, etc. These concerns are further important for

correct tracking of typestate properties, which Xanadu does not need to be concerned about.

3.7.3 X10

The constrained type of X10 [99] is related to the dependent type language we provide in

our work. X10 allows defining “constrained types” which are dependent types with logical

expressions over properties, final instance fields of a class, and final variables, in the scope of

the type as dependent terms. It also allows different constraint systems as compiler plugins.

Since both X10 and BR-Typestate are related to DML, there are a few similarities, yet some

important differences.

Firstly, the major focus of our work is to attack the expressive limitations of typestates,

thereby making it possible to verify non-regular program properties and protocols, while X10

is targeted towards static checking of generic constraints.

Secondly, we have a separate index definition language and index terms are separate from

the class fields and other variables. This indexing language is simple and contains constraints

over integer variables, this limits the expressiveness of our type system as compared to X10’s

constrained types but gives us a decidable type-checking without the need of a symbolic checking

as is needed in X10.

For instance, X10 type may contain a final field or even a method calls as an index of a type,

this allows to give far more expressive constraints but requires a symbolic execution to get the

possible properties of these fields and method executions. The symbolic execution could lead

to an undecidable type-checking in general.

Finally, X10’s type-system allows the conditional expressions to be a conjunction of dif-

ferent constraint families, thereby making it highly expressive but lacks a formal study of the

decidability of the type-checking over these complex expressions.

3.8 Loop Invariant Calculation

There is a substantial amount of work in the field of automated loop invariant inference, spawn-

ing more than three decades. This is an evidence of the role, loop invariants play in automated

verification of programs. This section discusses some of the related works in the field without

the pretence of being exhaustive. Our work clearly falls into the category of white-box, static

technique of loop invariants calculation and is a novel approach to compute loop invariants.

The work most closely related to our work is accelerating invariants generation by Kumar et

al. [81]. We discuss this work in detail after discussing some of the more general approaches to

synthesize loop invariants.

69



3.8.1 White-box Techniques for Loop Invariant Calculation

As discussed in the Chapter 2, there are various techniques under white-box methods and all

these techniques/work are aware of the program and the properties being verified. The white-

box technique may further be classified into, either static or dynamic. Static techniques for

loop-invariant calculation are more common and more recently, that dynamic techniques are

also being applied successfully to the problem.

3.8.1.1 Static Techniques

Abstract Interpretation and constraint based approaches are the most common static techniques

for static invariant inference. Jhala et al. [68] provide an overview of some of the important

static techniques and how they are useful. Abstract Interpretation performs a symbolic execu-

tion over the abstract domain of the program variables to verify or check some property. The

seminal work in this domain came from Cousot and Cousot [39] and the technique and was

later extended to handle features of modern programming languages like memory-management

and objects [78, 30]. Constraint-based methods rely on sophisticated decision procedures over

non-trivial mathematical domains like convex polyhedra. These domains are used to represent

the semantics of the loop with respect to some property of interest. Our work using accelera-

tion techniques (refer Chapter 5) belongs to this methodology of calculating invariants. One

important property of static methods is that they are sound and often complete with respect to

the class of invariants that they can infer. Soundness and completeness are achieved by using

decidable Techniques in the underlying mathematical domains they represent. This implies that

the extension of these techniques to new classes of properties is often limited by undecidability.

State-of-the-art static techniques can infer invariants in the form of mathematical domains such

as linear inequalities [40], polynomials [113, 111], restricted properties of arrays [24, 23, 64], and

linear arithmetic with uninterpreted functions [16]. Static loop invariant calculation techniques

can benefit from annotations in the form of method specifications or some loop invariants. A

few of the static techniques use these annotations [102, 73, 70].

Lahiri et al. [73] also leverage specifications to derive intermediate assertions, but focusing

on lower-level and type-like properties of pointers. [102] derive candidate invariants from

postconditions within a framework for symbolic execution and model-checking. [70] derive

complex loop invariants by first encoding the loop semantics as recurring relations and then

instructing a rewrite-based theorem prover to try and remove the dependency on the iterator

variables in the relations. The survey work from Furia et al. [59] provides a detailed list of

loop-invariants for some important algorithms and other related works and how these works

evolved. Reader should refer to [59] for further details.
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3.8.1.2 Dynamic Techniques

Ernst et al. [47] presented the first dynamic approach for invariant inference. It gave rise to

many derived works like [104, 41, 107, 62]. The basic idea of dynamic invariant inference

technique is to test a large number of candidate properties over a large number of program

runs. The properties which are never violated are more likely to be invariants. This suffers

from the general unsoundness of dynamic approaches. Nonetheless, it is quite effective and

useful in practice.

3.8.2 Black-box Technique for Loop Invariant Calculation

There are a few works using learning techniques which are agnostic about the program and

the properties being verified [48, 55]. Cobleigh et al. [36] presented learning in the context

of invariant calculations for the first time. This was followed by applications of the L∗ algo-

rithm [10] to find rely-guarantee contracts. Houdini [55] uses conjunctive Boolean learning to

learn conjunctive invariants over templates of atomic formulas. Recently, there has been an

increased interest in applying scalable machine learning techniques to an invariant calculation.

They use machine learning techniques to find classifiers that can separate positive examples

and good states from the counter examples [129].

In the same domain of learning based black-box technique of loop invariant calculation, Garg

et al. [60] present a learning framework for synthesizing invariants. The ICE-framework has

two main components, a teacher and a learner which iteratively interact to find the invariant.

3.8.3 Other techniques

The work most closely related to the loop invariant calculation approach presented by us is by

Madhukar et al. [81]. The work provides a detailed experimental study to show that accelerators

can support/aid program analyzers to improve the invariant synthesis. The work uses two main

analyzers with limited invariant calculation abilities, the CMBC [34] and the IMPARA [71],

and two further tools with a broad range of loop invariant calculation techniques. Although the

work empirically shows the correlation and possible applicability of acceleration, it does not use

acceleration as a loop invariant calculation technique. It instruments the loops in the program

with its closed accelerated form and then calls off-the-shelf analyzers. Compared to this, our

approach uses the exact set of reachable states (REACH) for Presburger-definable loops and

either uses this exact formula or some derived form of this as an invariant for the loop. This work

performs loop acceleration instrumentation over C programs using the acceleration technique,

while our approach can work over any program with Presburger definable loops (loop guards and

expressions in the body). Further, the emphasis of our work is to use the acceleration output
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for a restricted class of systems (Presburger-definable falttable counter systems) as a possible

invariant and inductively verify a given p-typestate property while their work emphasizes on

empirically showing that accelerated loops aid analyzers in verifying properties compared to

non-accelerated loops.

3.9 Chapter Summary

In this chapter, we presented a detailed survey of existing works related to our contributions in

this thesis. There are two major sections in the chapter. In the first section, we presented the

existing works related to Android formal modeling, asynchronous static analysis for Android,

existing typestates analysis for Android, etc. The second section contained related works for

the Parameterized typestate work discussed in Chapter 5. This contained existing related works

for typestate-oriented programming, regular typestates, other fully dependent typed languages,

dependently typed languages extension of simply typed languages, etc. Finally, we presented

existing works, related to our loop-invariant calculation approach.
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Chapter 4

Asynchrony-aware Static Analysis of

Android Applications

4.1 Introduction

Android is the heaviest used and rapidly growing mobile system with more than 2 million

paid and free applications on Google’s Play store currently [3]. Many of these applications

are rigged with benign and harmful bugs and vulnerabilities. Unfortunately, analyzing these

applications is a herculean task. There are numerous static [76, 13, 125, 79] and dynamic

program analysis [46] works which try to find bugs in Android applications.

Android applications are typically made up of four types of elements called components.

These are Activity, Service, BroadcastReceiver, ContentProvider. Each of these components

has sets of methods or callbacks which are called by the Android framework on various user or

system events. This differentiates these applications from normal Java programs and makes the

analysis of these applications challenging. The control and data flow in Android applications are

further complicated due to extensive use of asynchronous calls. These calls make it convenient

and efficient to model events and the interactions between various components, and permit the

Android framework to interleave the execution of several event handlers and other callback

methods.

Although many of the static analysis works [76, 125, 13, 79] for Android applications model

these interactions with the framework, none of these works correctly model the asynchronous

behaviour of the event handling mechanism and inter-component communications in Android.

Moreover, they also lack a correct modeling of the framework’s interaction with the application

components (called component lifecycle). These limitations bring unsoundness and imprecision

in these analyses.
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In this thesis, we present the first formal modelling of asynchronous control flow semantics

in Android applications and a sound (single threaded non-preemptive control flow as described

later in Section 4.5), and a precise model and semantics for component lifecycle of Android ap-

plications. We explicitly model all the asynchronous calls and framework callbacks by creating

an application environment model for the application and create a precise lifecycle state ma-

chine for each component. We define an Android inter-component control flow graph (AICCFG)

which integrates these two and soundly models all possible control flow interactions between

various units.

We present an algorithm to generate such an AICCFG for the application. We implement

and solve a client typestate [115] analysis to verify Android resource API usages as an instance of

the asynchronous interprocedural finite distributive subset (AIFDS) problem [68] and compare

the results of our analysis against an asynchrony-unaware version of the analysis on the program

representation used by other state-of-the-art analyses for Android applications. We demonstrate

empirically that these asynchrony-unaware techniques are both unsound and imprecise with

respect to our asynchrony-aware analysis. We present a set of 19 benchmark applications

in five different resource categories, called AsyncBench. This comprises of test applications

that use various resources in both safe and unsafe manner. A sound verification of these test

applications requires an asynchrony-aware modeling of the applications. We were able to verify

all the typestate violations in these applications with a precision of 78% and recall of 100%.

The comparison of these results against the asynchrony-unaware analysis over unsound program

representation used by other works clearly demonstrates the soundness and effectiveness of our

application modeling and analysis.

The major contributions of our work are as follows-

• We present the first sound model of asynchronous control flow and component lifecycle

semantics in Android applications.

• We present an intermediate representation of Android applications called AICCFG based

on the above model.

• We develop a typestate analysis over AICCFG and find resource API violations for a

variety of resource types.

• We present a set of benchmark applications called AsyncBench, comprising of applications

whose analysis requires a sound modeling of asynchronous and lifecycle semantics of

Android applications.
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• We finally compare our typestate analysis against an asynchrony-unaware analysis and

demonstrate the benefits of our modeling and analysis against these.

4.2 Motivating Example

4.2.1 Control Flow in a Typical Java Program

Consider a simple Java program in Figure 4.1 with a bunch of method calls. The control flow

for this program is shown in Figure 4.2. Such a graph captures all possible control flow paths for

any execution of the program. The control flow graph for a singe procedure or function is called

an intra-procedural control flow graph, while the one capturing control flows across procedures is

called an inter-procedural control flow graph. An inter-procedural control flow graph is an input

to many of the static program analysis algorithms and tools [110, 68, 119]. Unfortunately, an

Android application is not a simple Java application as discussed in Chapter 2 and the control

flow in Android differs extensively than control flows in normal Java programs.

Next we discuss some of these differences and discuss the limitations of the state-of-the-art

static analysis works for Android in correct and precise modeling of these differences. These

limitations will bring out the motivation for a correct modeling of Android control flow.

1 import X;
2 pub l i c s t a t i c void main ( St r ing [ ] args ){
3
4 in t x = 2 ;
5 i n t y = x +1;
6 i n t z = foo (x ) ;
7 z = x + y + z ;
8 X. abc ( ) ;
9

10 }
11
12 in t foo ( i n t x ){
13 return fooBar (x ) ;
14
15 }

Figure 4.1: A simple Java Program

Consider the example application FileReader in Figure 4.3. The application has two activ-

ities SelectActivity and ReadFileActivity. The application allows the user to select a file and

open the file in ReadFileActivity. The FileReader object, line 2, is a global static reference

which is accessible through both the components. A typestate [115] analysis checks the pos-

sible runtime states of a resource object against a given typestate property finite automaton.

A typestate property automaton (defined formally in Section 4.6.1), is a finite state machines

with states defining a set of states an object or a reference can be in and transitions defining

valid methods/operations in each of these states. Figure 4.4, shows such a typestate property

automaton for an Android Camera resource.
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Figure 4.2: A simple cfg for the program

To understand the possible flow of control in this sample application an application developer

and the analysis developer depends on official Android documentation. Unfortunately, the

documentation is verbose and not easy to understand. For example, let us try to understand

a simple semantics of onPause method completion of an Activity, from the official Android

documentation-

“Completion of the onPause() method does not mean that the activity leaves the Paused state.

Rather, the activity remains in this state until either the activity resumes or becomes completely

invisible to the user. If the activity resumes, the system once again invokes the onResume()

callback. If the activity returns from the Paused state to the Resumed state, the system keeps

the Activity instance resident in memory, recalling that instance when it the system invokes

onResume(). In this scenario, you dont need to re-initialize components that were created during

any of the callback methods leading up to the Resumed state. If the activity becomes completely

invisible, the system calls onStop(). The next section discusses the onStop() callback.” .

As evident, even a simple lifecycle rule is complex and not clear to understand, this makes

understanding of lifecycle enforced control flow in Android application a difficult task for appli-

cations developers and analyses writers. This lack of comprehension manifest in programming

errors for programmers and lack of soundness and precision in analyses for analyses writers.

Besides, lifecycles, there are various other Android features as discussed in Chapter 2, which

makes control flow comprehension and modeling a challenging task for Android applications.

For example, let us discuss about an analysis to verify a simple typestate property like,

“The application never reads from a closed FileReader”, in the example FileReader application,
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1 class SelectActivity extends ActionBarActivity{
2 public static FileReader myFileReader;
3 protected void onCreate(Bundle savedInstanceState){
4 ...
5 setContentView(R.layout.activity_select);
6 try{
7 String filePath = this.getFilesDir() + ’/’ + "exFile.txt";
8 myFileReader = new FileReader(...);
9 int data = myFileReader.read();

10 Intent targetIntent = new Intent(this, ReadFileActivity.class);
11 // asynchronous call to the ReadFileActivity
12 startActivity(targetIntent);
13 }catch (FileNotFoundException e){
14 e.printStackTrace();
15 }
16 }
17 protected void onStart(){
18 super.onStart();
19 }
20

21 protected void onResume(){
22 super.onResume();
23 Log.d(TAG, "onResume");
24 try{
25 myFileReader.close();
26 }catch(IOException e){
27 e.printStackTrace();
28 }
29 }
30 }

31 class ReadFileActivity extends ActionBarActivity {
32 protected void onPause(){
33 super.onPause();
34 }
35 ...
36 protected void onStop(){
37 super.onStop();
38 try{
39 ...
40 int data = SelectActivity.myFileReader.read();
41 Log.d("ReadFileActivity", "data " +data);
42 }catch (IOException e){
43 e.printStackTrace();
44 }
45 }
46 }

Figure 4.3: FileReader Application
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initstart open

error

open

release, startFD, startP

startFD, startP
release

open

open, release, startFD, startP

Figure 4.4: Simplified Typestate property finite automaton for Android Camera API: startFD
:= startFaceDetection, startP := startPreview

the analysis needs to verify and guarantee that the FileReader.read() is never called when

FileReader has been closed using FileReader.close() and not re-opened again. Suppose such an

analysis starts with the SelectActivity ’s onCreate() where FileReader is instantiated and File

is read at lines 8 and 9 respectively. This read operation is safe as FileReader’s instantiation

switches the object to open state. Line 12 makes an inter-component communication (ICC)

call to ReadFileActivity. The correct semantics of Android on such an ICC call is as follows

• The ICC call is treated as an asynchronous call. An asynchronous call is a method call

which instead of being dispatched and executed at the call site, is stored in a task queue

(associated with the thread) and is dispatched for execution at some later time.

• The lifecycle callback onCreate has an atomic execution semantics.

• Once onCreate finishes execution, the Android framework (the ActivityManagerService)

schedules onStart, onResume and onPause callbacks in that order (if present), before the

control could escape to another component.

• Once onResume finishes execution, since the application is not overriding onPause, the

call to the target Activity at line 12 is scheduled for dispatch , and ReadFileActivity’s
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onCreate is called.

There are three major features of the Android framework which govern the above semantics.

1. All the component callback methods have atomic execution, and they finish execution

before another callback of the same or different component can be scheduled.

2. Each component has a control flow protocol (lifecycle), a set of ordering relations which

governs the calling order and control flow between callbacks in and across components.

3. The ICC call like the one at line 12 is asynchronous in semantics and hence the actual

dispatch of such calls is separated in time and is managed by the framework. In a typical

synchronous call, the call is executed at the call site and the caller blocks itself and waits

for the callee to return. Compared to this, the caller is not blocked in an asynchronous

call, and the state of the system can possibly change between the time of the call and the

time of dispatch of the callee for execution.

Let us try to see the possible control flow and its effect on the typestate property of the

FileReader object in the example application. We will try to explain this in the light of our

understanding of the way asynchronous calls and component callbacks are executed by the

Android framework. Since the control flow spans across methods and even across different

components, we refer the reader to Figure 4.6 which shows an inter-component control flow

graph for the application. Although we later argue that this control flow graph is unsound, it

will suffice to explain the correct possible control flow in the application. The figure only shows

line numbers (as L12, L25, L40) which are crucial for the understanding of the flow of control.

When a user or a system process starts the application, a new instance of Activity is created by

the Android System and code block FileReader.<init> gets executed. Following this, the main

entry component (called the LAUNCHER) SelectActivity is created by a call to sa.onCreate(b).

Since a lifecycle callback has atomic execution semantic, this code block is executed atomically.

Due to this, the asynchronous ICC call at line L12 in this block is executed, but the call is

not dispatched until the synchronous call to doSomething() is complete. Further, due to the

asynchronous nature of the ICC call, the Android system stores the call in a queue to be later

dispatched, rather than dispatching it right away and blocking the control.

Once the execution of sa.onCreate is complete, the control does not return to the Android

System Service, rather the control is passed to the execution of the next lifecycle call back

method sa.onStart. This is enforced by the lifecycle rule for an Activity. However, the control

flow breaks in case of an Exception as shown in the figure. This lifecycle enforced control flow
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has two main effects, firstly, again sa.onStart followed by sa.onResume and sa.onPause are

executed before the stored ICC call to ReadFileActivity is actually dispatched. Secondly, when

this call is dispatched, the myFileReader is already closed (at line L25), hence the state of the

FileReader object is changed to closed. Once, the execution of sa.onPause is complete, the

control is transferred back to the Android System (shown abstractly by control flow edges to

Label 1.5, followed by an edge to Label 1). Now, since there is a pending asynchronous call to

ReadFileActivity, its onCreate method is executed. This is again followed by lifecycle control flow

directed flows, each executed atomically. Thus, after the completion of rfa.onPause, rfa.onStop

is scheduled for execution and the file is read. Since, the FileReader object is in the state

close, this read operation is a potential typestate violation. To correctly capture this possible

property violation, a sound static analysis should correctly model this control flow semantics.

If not, the analysis results will be unsound and/or imprecise. Next, we see how state-of-the-art

approaches fail to soundly capture this control flow.

Unfortunately, all the state-of-the-art static analysis works for Android either do not aim at

such a correct modeling or miss the correct modeling in the urge to apply the known static anal-

yses techniques for Java programs to Android. Let us see how two of the major state-of-the-art

static analysis works for Android, IccTA [76] and AmanDroid [125] will handle handle such a

control flow. Figure 4.5, shows how IccTA handling a typical ICC in an application. The asyn-

chronous ICC call at line 7 is followed by a call to a redirecting static method IpcSC.redirect0().

This is a synchronous standard call to the target component (onCreate method of the target)

of the ICC call. Although this is easy to implement and allows straightforward extension of

standard static analysis tools for Java to Android, this does not capture the correct asyn-

chronous semantics of the ICC call and android component lifecycle. Figure 4.6, shows the

inter-procedural control flow graph (with the system calls and services approximated) generated

for the example FileReader application as generated by IccTA. The figure shows two subparts

separated by a dashed vertical line-segment. The Application part contains an intra-component

control flow graph for each application component and all possible synchronous control flows

between them. The second part of the figure models the Android System Service (Activity-

ManagerService), with control flow edges showing invocation of different Components from the

System Service. The Labels in the System Service are abstractions representing call and re-

turn points for the Components. The numbering, 1, 2, and 3 shows the ordering of the relevant

events as modeled by the control flow graph generated by IccTA. The ordering depicts that, the

file is opened (at L12), read (at L40) and then closed (at L25). Unfortunately, this treatment

of asynchronous ICC calls as synchronous calls, and imprecise handling of lifecycle control flow

leads to both unsoundness (missing of certain control flow paths possible during execution) and
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1 class SelectActivity extends ActionBarActivity{
2 public static FileReader myFileReader;
3 protected void onCreate(Bundle savedInstanceState){
4 String filePath = this.getFilesDir() + ’/’ + "exFile.txt";
5 ...
6 Intent targetIntent = new Intent(this, ReadFileActivity.class);
7 startActivity(targetIntent);
8 IpcSC.redirect0(targetIntent);
9

10 doSomething();
11 doSomethingElse();
12 }
13 onStart(){console.log("Starting Activity");}
14 onResume(){console.log("Resuming Activity);}
15 void doSomething(){console.log("Doing Something"); }
16 void doSomethingElse(){ console.log("Doing Something Else"); }
17 }
18

19

20 class IpcSC {
21 static void redirect0(Intent i) {
22 ReadFileActivity rfa = new ReadFileActivity(i);
23 rfa.dummyMain();
24 }
25 }

Figure 4.5: Generated ICC handling code

imprecision. For example, the lifecycle model of these works captures many intra-component

lifecycle control flows but misses possible control flows between lifecycle methods of two differ-

ent component. Figure 4.7 shows an example of allowed and missed control flows for a sample

application with two components. Figure 4.8 shows a specific example of such missing paths in

the interprocedural control flow graph our example FileReader application.

As shown in graph generated by IccTA (and a similar graph is generated by other static

analyses capable of handling ICCs), the call at line 12 is treated as a synchronous call and is

dispatched as a blocking call at the call site. Thus the graph incorrectly models the control

flow ordering 1, 2, 3 and since there is no possible control flow path for the sequence 1, 3, 2,

it misses the actual control flow according to asynchronous semantics. As a result of this, the

analysis misses a typestate violation at line 40.

Thus, existing static analysis works for Android applications fail to correctly model the asyn-

chronous semantics of ICCs and handling of callbacks. They also lack precision and soundness

in modeling the lifecycle semantics of components. In this thesis, we provide a formal model

and semantics of Android asynchronous ICC, lifecycle and other control flow features. We also

present an intermediate program representation called the Android Inter-Component Control

Flow Graph (AICCFG). The AICCFG soundly captures the formal control flow semantics given

by us. We show the effectiveness of our AICCFG by developing a client typestate analysis as
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Figure 4.6: Application CFG similar to the one generated by IccTA

Figure 4.7: Allowed and Missing Flows in life-cycle Model
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Figure 4.8: A missing ICC control flow interleaving in IccTA

an AIFDS [68] instance over AICCFG. We effectively capture several typestate violations and

verify important typestate properties over a variety of applications.

Before jumping into the technical details of AICCFG definition and construction, let us see

an example of the AICCFG constructed for our example FileReader application. Figure 4.9

presents the AICCFG for the application. There are three components of the graph, the left

and right graph components are asynchronous control flow graphs for ReadFileActivity and

SelectActivity respectively, while the Ambiance in the center is the model of Android system.

Each square node is a basic block of instructions. For clarity, some of these blocks are annotated

with the method name (like rfa.onCreate(), sa.onCreate(), etc.) when the block represents an

atomically executed lifecycle callback method. There are two special kind of nodes, an init

node for each Component control flow graph, which is node block with call and return edges

to each lifecycle method of the Component. This init block is in turn called and returns to a

special unique node of AICCFG called, the dispatch node. All the asynchronous ICC calls and

dispatch semantics are modeled via this dispatch node. There are two kinds of edges shown in

the figure. Firstly, solid edges showing lifecycle control flows across lifecycle methods of a single

component and between these methods and the init. Secondly, dotted edges showing control

flows between inits and dispatch node.

As can be seen from the example AICCFG, interleavings of control flows between lifecycle

methods of two different Components. The graph also shows how there is no direct method

invocation edge from the ICC call (L12) to the target (L10) as was the case in the control flow

graph generated by other state-of-the-art analyses. Further, the missing control flow sequence

(1, 2, 3) is a possible control flow sequence in AICCFG for the application.

In next section we discuss the definition of AICCFG in detail along with an algorithm

to generate an AICCFG for an application. This is followed by formal semantics of Android

control flow and a discussion about the limitations of the Android application model we discuss

here and soundness of AICCFG with respect to the formal semantics.
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Figure 4.9: Application AICCFG showing possible flow of control

4.3 Android Application Environment Modeling And AIC-

CFG Creation

Android applications execute inside the Android framework which asynchronously interacts

with the application components on various user and system events. There exists a system dis-

patcher, the ActivityManagerService class of the framework which schedules an event-handler

or a component lifecycle callback method based on the event fired and the state of the appli-

cation. For example, in the FileReader application example, pressing of the back button by the

user on the ReadFileActivity screen will make the Android system call ReadFileActivity’s onStop

method. To soundly model the control flow of Android applications we model the framework,

over-approximating its asynchronous semantics and dispatch logic.

Our Android application environment model is an asynchronous control flow graph for

the whole application capturing the single threaded, non-preemptive control flow semantics of

these applications. This graph is called the Android Inter-Component Control Flow Graph

(AICCFG). This model contains three major structures namely the ambiance, an init code

block for each component instance and a set of intra- and interprocedural edges. A node of the
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AICCFG models a control location or a set of control locations. The edges represent a sequence

of program statements or simply a flow of control between nodes.

As explained before in Chapter 2, an Android application runs inside the Android framework

and interacts with the Android system during its execution. The Android system reads the

Manifest associated with an application, and controls creation, lifecycle and other control flows

in the application. We discussed these features in the Android formal semantics section above.

The ambiance described here models these interactions of an application with the Android

system. It creates instances for components, keeps track of pending asynchronous calls, and

performs other tasks performed by the Android system. Further, the ambiance models the

asynchronous call and return semantics of ICC calls via a special dispatch node. The dispatch

node is crucial for a sound asynchronous static analysis of an application. (refer Chapter 2).

Thus, ambiance is the core component of an AICCFG and it models the single threaded, non-

preemptive, asynchronous call semantics of an application.

Figure 4.10 shows the ambiance (middle) and lifecycle state machine of two Activities (on

sides) for the example FileReader application. There are three kinds of edges- the dashed black

edges representing the asynchronous call dispatch and return edges, solid black edges, repre-

senting inter-procedural, synchronous call and return edges, and solid grey edges representing

other intraprocedural control flows.

4.3.1 Ambiance

Consider Figure 4.10. The ambiance (middle) comprises of three nodes v0, v1 and vd, and two

code blocks b1 and b2, where:

• Block b1- Each public and launcher components in an Android application is instantiated

by the Android framework when needed (e.g., launching of an application from the home

screen creates an instance of the launcher component). The ambiance, contains instruc-

tions instantiating each of these components explicitly. Block b1 in the figure represent

such an instantiation code block. For example, SelectActivity in the running example is a

public component of the application (as declared in the Androidmanifest.xml) file associ-

ated with the application, thus the ambiance instantiates an object of SelectActivity class

in code block b1. The following code fragment shows the code block b1 generated for the

running example application.

1 b1{

2 SelectActivity sa1 = new SelectActivity();

3 }
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Figure 4.10: Ambiance and lifecycle state machines for FileReader Application

• Block b2- For each inter-component communication (ICC), explicit or implicit, the An-

droid framework creates a new instance of the target component at runtime if this is the

first ICC call to the target. Corresponding to this, the ambiance contains instructions

instantiating each possible targets of all the ICCs in the application. Block b2 in the

figure denotes this instantiation code block. For example, ReadFileActivity in the running

example is a target of an ICC at line number 12, and the ambiance contains instructions

instantiating an object of ReadFileActivity which is then invoked asynchronously from the

dispatch node vd(defined next). The following code fragment shows the code block b2

generated for the running example application.

1 b2{

2 ReadFileActivity rfa1 = new ReadFileActivity();

3

4

5 }

• Node vd- Android framework asynchronously calls each component instance (instanti-

ated in blocks b1 or b2) based on various user and system events, like launching of the

application, pushing back button on the home screen, etc. The ambiance needs to soundly

model these asynchronous calls and callbacks. Node vd in the figure is called the dispatch

node and is a special control location which statically models these asynchronous calls and

returns from the framework. For example, the semantics of the Android system making
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an asynchronous call to ReadFileActivity’s onCreate method is captured via this dispatch

node vd. Following code fragment shows a simplified code generated for node vd. The

node makes calls to initialization methods of each of the components instantiated in code

blocks b1 and b2.

The lifecycle initialization method called init() in Figure 4.10 models the calls to a se-

quence of callback methods once the component is instantiated. For example, once an

Activity is instantiated, its onCreate, onStart, onResume and onPause methods are in-

voked by the framework in that order, before the control can switch to another com-

ponent. Edges from vd to SelectActivity’s onCreate and other callback methods model

asynchronous dispatch (and return wherever allowed by lifecycle rules) edges to various

lifecycle callback methods from the framework. This is shown via a pseudo code for a

dummy main method for the application in following code fragment. The code fragment

is in jimple intermediate representation of Soot [119].

1

2

3 public static void main(java.lang.String[])

4 {

5 java.lang.String[] l0;

6 bottom_type l1;

7 com.iisc.androidanalysis.typestatetest1.SelectActivity l2;

8 com.iisc.androidanalysis.typestatetest1.ReadFileActivity l3;

9 android.os.Bundle l4;

10

11 // created during construction of b1 and b2

12 l0 := @parameter0: java.lang.String[];

13 l2 = new com.iisc.androidanalysis.typestatetest1.SelectActivity;

14 specialinvoke l2.<com.iisc.androidanalysis.typestatetest1.FirstActivity: void

<init>()>();

15 l3 = new com.iisc.androidanalysis.typestatetest1.ReadFileActivity;

16 specialinvoke l3.<com.iisc.androidanalysis.typestatetest1.ReadFileActivity: void

<init>()>();

17

18 // Ambiance

19 label1:

20 if l1 == 0 goto label3;

21

22 if l1 == 1 goto label3;

23

24 l4 = new android.os.Bundle;

25 specialinvoke l4.<android.os.Bundle: void <init>()>();

26 virtualinvoke l3.<com.iisc.androidanalysis.typestatetest1.ReadFileActivity: void

onCreate(android.os.Bundle)>(l4);

27

28 label2:

29 if l1 == 4 goto label3;
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30

31 if l1 == 5 goto label2;

32

33 label3:

34 if l1 == 7 goto label4;

35

36 label4:

37 if l1 == 9 goto label7;

38

39 if l1 == 10 goto label7;

40

41 l4 = new android.os.Bundle;

42 specialinvoke l4.<android.os.Bundle: void <init>()>();

43 virtualinvoke l2.<com.iisc.androidanalysis.typestatetest1.SelectActivity: void

onCreate(android.os.Bundle)>(l4);

44

45 label5:

46 virtualinvoke l2.<com.iisc.androidanalysis.typestatetest1.SelectActivity: void

onStart()>();

47

48 label6:

49 staticinvoke <com.iisc.androidanalysis.typestatetest1.SelectActivity: void

<clinit>()>();

50 if l1 == 12 goto label6;

51

52 if l1 == 13 goto label6;

53

54 if l1 == 14 goto label6;

55

56 if l1 == 15 goto label7;

57

58 if l1 == 16 goto label5;

59

60 label7:

61 if l1 == 18 goto label1;

62

63 return;

64 }

65

66 }

Note that, these asynchronous call and return edges soundly model all possible interleavings

between the callback methods of different components. Missing them may lead to unsoundness

in the AICCFG. For example, Figure 4.11 shows an execution sequence which requires such

a correct modeling of these inter-component flows. Such a sequence is possible when a user

pushes the back button from the ReadFileActivity activity, this causes the Android system to

call ReadFileActivity’s onPause. Control can then possibly be transferred to SelectActivity’s

onResume before finally being passed to ReadFileActivity’s onStop method. The execution
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Figure 4.12: Part of AICCFG for FileReader application ( 99K : asynchronous dispatch and
return edge, → : synchronous call and return edge, → : intraprocedural edges )

sequence (1-2-3-4) in Figure 4.11 can be traced in Figure 4.10 and is shown by numbered

edges (1-2-3-4). Such a control flow is an outcome of interleaving of asynchronous ICC and

lifecycle semantics of applications. Other works modeling lifecycle callbacks and other ICC as

synchronous calls, unfortunately, miss such an interleaved execution path.

4.3.2 Android Inter Component Control Flow Graph, AICCFG

AICCFG is an asynchronous control flow graph G∗ = (V∗, E∗), for the whole Android appli-

cation modeling the asynchronous calls, event handling and lifecycle callbacks invoked by the
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Android framework. The graph is based on the asynchronous program representation described

in [68] extended to model the control flows specific to Android applications. In this section we

formally define the AICCFG, illustrating its features using Figure 4.12 which shows a part of

the AICCFG generated for the example FileReader application. The figure is a detailed version

of Figure 4.10 and shows a more fine-grained view of the control flows.

The graph in Figure 4.12 has nodes representing the control locations, with double-edged

circles representing the terminal locations for a method or callback. The graph can be divided

into three subgraphs for the ReadFileActivity, SelectActivity and the ambiance in the middle.

There are three major types of edges in the figure-

• intraprocedural grey edges, connecting successive statements (e.g. v3 → v4).

• interprocedural solid black edges, representing synchronous call and return (e.g. v2→ v3

or v2 → v6).

• and interprocedural dashed black edges, representing asynchronous dispatch edges from

the special dispatch node vd to certain lifecycle callback methods and lifecycle initial-

ization method init() and their corresponding return edges (e.g. vd → v2 and v2 →
vd).

To define the AICCFG, we begin with the definitions of substructures needed to define it.

Figure 4.12 is used to illustrate these definitions.

Lifecycle Callback Control Flow Graph Each lifecycle callback method like onCreate,

onStart, etc. is a Java method which is invoked by the framework on certain events and is

executed atomically. The lifecycle callback control flow graph (LCCFG) defines the control

flow graph for such a lifecycle callback method. It is a asynchronous control flow graph, Glc

= (Vlc, Elc), where Vlc is the set of control locations in the callback method and Elc is a set of

normal control flow edges (e.g. edges like v3 → v4 ) along with two types of intraprocedural

edges between nodes corresponding to following types of program statements-

• an intraprocedural edge from a call site to the return site corresponding to each syn-

chronous call to a method m in the callback method. For example, edge (v4 → v5) with

label read in the figure.

• an intraprocedural edge from a call site to the return site corresponding to each asyn-

chronous call to a method or a component. For example, edge (v5 → v5’) with a label

startActivity in the figure.
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Since an asynchronous call is stored in the task queue and not dispatched directly and the

control stays with the caller, the above intraprocedural edges corresponding to asynchronous

calls correctly model the delayed dispatch semantics of asynchronous calls. These asynchronous

pending calls will be dispatched later from the dispatch node vd.

Android Component Control Flow Graph The Android framework enforces lifecycle

rules associated with each component of an Android application. This defines the control flow

semantics associated with a component. An Android component control flow graph (ACCFG),

models synchronous part of the control flows in a component. It is a synchronous, interprocedu-

ral control flow graph Gc = (Vc, Ec), which comprises of a set of LCCFG, one for each callback

defined in the component along with the init method. The node set Vc is the union of the nodes

Vlc for each LCCFG, and the edge set Ec is the union of the edges of each LCCFG, along with

a set of synchronous interprocedural edges defined as follows.- For each intraprocedural edge in

an LCCFG corresponding to a synchronous call, the ACCFG has -

• an interprocedural synchronous call edge from the callsite to the callee’s entry node cor-

responding to each synchronous call in the method.

• an interprocedural synchronous return edge from the exit of the callee to the return site.

Note that the ACCFG misses the asynchronous dispatch and return edges which will be

modeled by the AICCFG defined next.

Android Inter Component Control Flow Graph An AICCFG is an asynchronous con-

trol flow graph G∗ = (V∗, E∗), for an Android application modeling asynchronous calls, event

handling and lifecycle callback invoked by the Android framework. Intuitively, it models the

asynchronous dispatches corresponding to the asynchronous calls occurring in the application.

An asynchronous dispatch is an interprocedural edge from the node vd (in the ambiance) to a

method or a callback, for which there is a pending asynchronous call. For example, the edge

(v5 → v5’) labeled startActivity() adds a pending call to the ReadFileActivity’s init method.

This call will be dispatched later from vd, represented by the edge (vd → v8). Thus, the AIC-

CFG integrates the ACCFGs and the ambiance together and models the correct asynchronous

dispatches performed by the framework. V∗ is the union of nodes for each of these elements

and E∗ is the union of edges for each ACCFG plus a set of the following asynchronous dispatch

edges corresponding to each pending asynchronous call in the application.

• An asynchronous dispatch edge to each init ∈ Vc of the ACCFG set. For example, the

edge (vd → v2) in Figure 4.12 represents such an edge from vd to SelectActivity’s init

method.
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• An asynchronous return edge from the exit of init to vd. For example, the return edge

from v2 and v8 to vd in Figure 4.12

• Android framework can make asynchronous calls to certain lifecycle callback methods of

a component. The AICCFG models these calls as asynchronous dispatch edges from vd

to the entry of these lifecycle callback methods of each ACCFG instance. For example,

edge (vd → v6) in Figure 4.12.

• Corresponding to each vd to the entry of a method like (vd → v6), there is an interpro-

cedural return edge from the exit of callback, like (v7 → vd).

Valid Paths in AICCFG We claim, that AICCFG presents a sound over-approximation of

the possible control flows in Android applications, i.e. for any possible execution sequence in an

Android application, there exists a valid path (generated by concatenating nodes of AICCFG)

in the AICCFG generated for the application. However, not all the paths in the AICCFG of

an application is a valid execution sequence. A valid path in an AICCFG is defined as follows:

Definition 4.1 A path p in an AICCFG, generated by concatenating nodes along p is a valid

path iff it satisfies following properties:

1. p is a valid inter-procedural path, with matching synchronous call and return edges.

2. p satisfies all the lifecycle control flow semantics defined earlier (refer Figure 4.17) for

corresponding component type. For instance, although an AICCFG might have an edge

(onResume → onRestart) for some Activity component, such a control flow does not

satisfy the lifecycle semantics defined for an Activity.

3. p has a valid asynchronous sequence ∂(p) associated with it, i.e. for each asynchronous

dispatch edge in p, there must be a pending asynchronous call generating that dispatch

seen earlier in p.

Following the above definition of valid paths in an AICCFG, one can check whether a given

path in an AICCFG is valid or not. For example, there is no possible execution sequence for the

path (1-2-3-4-5-6-1-2-3-6), which calls the init for SelectActivity twice. This violates the third

requirement in the above definition as the path does not has a valid asynchronous sequence

∂(p). This is due to the fact that, each asynchronous ICC (like startActivity in edge v5 →
v5’) corresponds to a single asynchronous call to target. Thus informally, the set of valid paths

in AICCFG, include only those paths for which every asynchronous dispatch has a matching

asynchronous call defined earlier in the path. We refer the reader to [68] for a more formal

semantics of asynchronous procedure calls.
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4.3.3 Ambiance and AICCFG Construction

Algorithm 1 presents an algorithm for constructing the AICCFG for a given application. An

Android applications is compiled into Dalvik executables and packaged into an .apk file. The

application also has a manifest file which provides essential information about the application to

the Android system. Our algorithm takes the application’s apk A, and the manifest M as input

and emits the AICCFG, G∗ = (V∗, E∗) as output. The algorithm’s Main routine extracts the

launchers and public components of the application from M, using auxiliary methods getLaunch-

ers() and getPublicComps() at lines 3 and 4 respectively. The call to method getICCCalls(),

at line 5 analyzes the application and the manifest and returns the set of inter-component

communication calls, iCCSet in the applications. The method call to getComponentCfgs() at

line 6 generates an ACCFG for each public and launcher component extracted earlier. Line 7

makes a call to subroutine createAmbiance.

The createAmbiance function (lines 11-19) takes lists of public and launcher components

as input and instantiates each of these components creating blocks b1 and b2 (similar to the

blocks in Figure 4.12) at lines 14 and 15. It also takes the iCCSet as input and instantiates

the target of each of these ICC calls and concatenates these to b2 at line 16. It creates a new

dispatch node vd at line 17 and finally concatenates each of these to the empty ambiance at

line 18, and returns the generated ambiance.

The createAICCFG subroutine takes the generated ambiance and a list of ACCFGs accfgs

as input and returns the final G∗ = (V∗, E∗) as output. It initializes the node and edge sets

with empty sets (line 23) and extracts the vd from the ambiance (line 24). The outer while

loop (lines 25-36) visits each ACCFG Gc = (Vc, Ec), and adds the nodes and edges to V∗ and

E∗ respectively (lines 26-28). The inner while loop (lines 30-34), looks at each node Nc ∈ Vc,
and creates an asynchronous dispatch edge (vd, Nc), iff Nc is an entry node of a callback (e.g.

node v3 in Figure 4.12) and adds this edge to the edge set E∗ (line 33). Else, it creates an

asynchronous return edge (Nc, vd), iff Nc is an exit node of a callback (e.g. nodes v7 or v10 in

Figure 4.12) and then adds this edge to the edge set E∗ (line 37). The method returns the G∗,

to the caller Main which finally return the generated AICCFG G∗.

To understand the soundness (refer Chapter 2) of our AICCFG against the Android en-

vironment models used by other static analysis works, consider Figure 4.13 which presents a

simplified partial environment model generated by IccTA [76] for the same example FileReader

application. AmanDroid [125] has a similar ICC and asynchrony-unaware semantics as mod-

eled in this graph. The figure has nodes and edges defined similarly to Figure 4.12, but lacks

any asynchronous features (dispatch node and dispatch edges). Consider a path in Figure 4.12
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Algorithm 1: Algorithm AICCFG construction
input : Application Manifest M and apk A.
output: AICCFG G∗ = (V∗, E∗) for the application.

1 Main() begin
2 launchers ← getLaunchers(M);
3 publicComps ← getPublicComps(M);
4 iCCSet ← getICCCalls(M, A);
5 accfgs ← getComponentCfgs(launchers, publicComps);
6 ambiance ← createAmbiance(launchers, publicComps, iCCSet);
7 aiccfg ← createAICCFG(ambiance, accfgs);
8 return aiccfg;

9 end
10 createAmbiance(launchers, publicComps, iCCSet) begin
11 ambiance ← ∅;
12 b1 ← instantiate(launchers);
13 b2 ← instantiate(publicComps);
14 b2 ← v1.concat(instantiate(iCCSet));
15 vd ← newNode(); /*Creates a new empty node */
16 ambiance ← ambiance.concat(b1, b2, vd);
17 return ambiance;

18 end
19 createAICCFG(ambiance, accfgs) begin
20 V∗ ← ∅; E∗ ← ∅;
21 vd ← (ambiance.vd);
22 while accfgs has Gc = (Vc, Ec) do
23 Gc ← remove(accfgs);
24 V∗ ← V∗ ∪ Vc;
25 E∗ ← E∗ ∪ Ec;
26 while Vc has Nc do
27 Nc ← remove(Vc);
28 if Nc is a callback method’s entry then
29 (vd, Nc) ← createEdge(vd, Nc);
30 E∗ ← E∗∪ {(vd, Nc)};
31 end
32 else if Nc is a callback method’s exit then
33 (Nc, vd) ← createEdge(Nc, vd);
34 E∗ ← E∗∪ {(Nc, vd)};
35 end

36 end

37 end
38 return G∗;

39 end
40 getLaunchers(Manifest M) begin
41 tagValue ← parseManifest(M);
42 componentList ← getValueFromTags((action,“MAIN”),(category, “LAUNCHER”);
43 return componentList;

44 end
45 getPublicComps(Manifest M) begin
46 tagValue ← parseManifest(M);
47 publicList ← getValueFromTags((exported,“true”));
48 publicListExtended ← getOuterElement((intent-filter));
49 fullPublicList ← publicList ∪ publicListExtended;
50 return fullPublicList;

51 end
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Figure 4.13: Partial Android environment model generated by IccTA for the FileReader appli-
cation

with numbered edges (1-2-...-8). This is a possible valid execution path for some run of the

application. The set of possible paths in Figure 4.13 lacks such a path due to the unsound

modeling of asynchronous calls as synchronous. Their graph dispatches the ICC call startAc-

tivity() (edge v4 → v5) synchronously and blocks till the callee returns. Thus the call to read

in ReadFileActivity’s onResume() (v8→ v9) is reached before the object is closed in SelectAc-

tivity’s onResume is called (v5 → v11). As evident from this example, this makes the analyses

built over their model inherently unsound. In this case, the analysis will be missing a possible

typestate violation at (v8 → v9).

Another source of unsoundness in IccTA comes from modeling component lifecycle as a

synchronous control flow block (e.g., the ReadFileActivity’s lifecycle block), which lacks the

ability to model the interleaved control flows between component callbacks. For example,

consider the execution sequence shown earlier in Figure 4.11. There is no possible path in

Figure 4.13 to model such a sequence, while our AICCFG can easily capture such a path

(4-5-6-7-8) in Figure 4.12.
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4.4 Android Application Formal Modeling and Formal

Control Flow Semantics

Android application developers develop applications to run in synergy with the Android frame-

work and the Android System. Thus, the exact semantics of these applications is not straight-

forward and requires understanding. In this section of the chapter, we present a formal abstract

syntax and a small step operational semantics for an Android application. Following this, we

also present a formal semantics for Android control flow including the component lifecycle,

asynchronous calls and other control flow features of an Android application. We consider an

Android application as Java programs with additional control flow semantics, this is contrary

to other formal modeling attempts for Android [103], which define some form of semantics over

dalvik bytecode instructions. This allows us to focus away from concrete dalvik instruction,

and to focus exclusively on abstract features of Android applications and their control flow.

4.4.1 Syntax

The abstract syntax for an Android application consists of a Manifest, a set of Class declarations,

Method declarations, fileds and Constructor declarations, etc. The abstract syntax is presented

in Table 4.1. We first explain the metavariables used in the syntax. A, B, C, D, E,... range over

class names. f, g, h,... range over field names, m, ranges over method names, while σm, σn, ...,

ranges over event and lifecycle handler names. x ranges over variable names, d, e range over

expressions. The set of variables include a special variable this, which represent the current

reference or location and cannot be used as an argument or a return variable to a method or

an event-handler.

We write C as a shorthand for possibly empty sequence of C1,C2, ...Cn and similarly define

f, x,M, etc. The comma (,), represents a normal concatenation. We represent a pair as (a, b)

and abbreviate operations on pairs of sequences in an obvious way. For instance, we use Cf to

represent ( C1f1 C2f2 ... Cnfn and Cf; to represent ( C1f1; C2f2; ...Cnfn;). The expression, this.f

= f; is an abbreviation for, this.f1 = f1;...this.fn = fn. For simplicity, we assume no duplication

of names of fields, methods, classes, variables or other names.

An android application is a list or a collection of class declarations C and an XML property

file called the Manifest. The Manifest is further defined as a list of (tag, value) pairs defining

properties related to an application, its components and its environment. A class is defined

in a syntax similar to the Feather Weight Java(FWJ) [65], extending a superclass. Contrary

to the FWJ, the superclass can be of two kinds, either a normal Java class (JavaC) or a class

from a set of classes called Component Classes. The Component classes define the base classes
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(Application) (A) ::= ( Manifest, C )

(Manifest) (Manifest) ::= (tag, value)
(Class) (C) := CompC

| JavaC
(Component Class) (CompC) ::= class D extends Comp { K̄, C̄ f̄; σ̄ M̄ }

(Java Class) (JavaC) ::= class D extends E { K̄, C̄ f̄;, M̄ }
(Component) (Comp) ::= Activity

| Service
| BroadcastReceiver
| ContentProvider

(Constructor) (K) ::= C (C g) { super(ḡ); this.̄f = ḡ;) }
(Method) (M) ::= C m (C x) { C f; ē; return e; }

(Event Handler) (Σ) ::= void σm (C f) { C g; ē; skip;}
(expression) (e) ::= x | value | li

new K (ē)
| e ; e
| x = e
| invoke (code, data)
| invokeF (code, data)
| skip
| c

(code) (code) ::= M | Σ
(data) (data) ::= value r { M , Σ }
(value) (value) ::= c | O† | M | Σ

(constant) (c) ::= 0,1... | s ∈ String | b ∈ Bool |

Table 4.1: Abstract Syntax for Android Applications
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for Android Components, viz. Activity, Service, BroadcastReceiver and ContentProvider. We

represent this class set as Comp. The body of the class contains a list of constructors K, a set

of fields f tagged with respective classes C̄, a set of method declarations M and a set of event

handlers declarations Σ, exclusively for a class extending a CompC.

An Android class has a list of method declarations M. Each method declaration has a return

Type(Classname for the return Type), a method name m, a list of expressions as arguments ē

and a body. The method body contains a list of fields or local variable declarations, f̄ , list of

expressions or statements ē, and a mandatory return statement marking the end of the method

body.

An event handlers declaration Σ is similar to method declaration with one major difference,

each event handler’s body ends with a special “skip” expression marking the end of the event

handler body. This is helpful in defining the semantics of these event handlers as an atomic

block of instructions. There are some predefined events generated by Android System and

analogous to them there exist predefined event handlers, these include { onCreate, onRecieve,

onStart etc}. Apart from these Σ includes other System and user-generated event handlers.

An expression e is either a variable (x), a value, an abstract location represented by li, a

constructor invocation, an assignment, an asynchronous invocation of an event handler σ, and

a synchronous or an asynchronous invocation of a method m. A value could be a constant c,

an abstract object o† a method declaration m or an event handler declaration σ. A constant c

could further be an integer literal, a string literal or a boolean true or false.

4.4.2 Android Semantics

4.4.3 State of the system

To discuss and argue about the operational semantics of Android applications we define the

state of the system. The runtime semantics of an Android application can be reasoned using

the state or the runtime configuration of the application which we define by a 5 tuple as follows.

State, ω = 〈iC,Γ,Π, µ, pc〉

where,

• iC = Set of Active Component instances.

• Γ = Method Stack [m0,m1, ...mn, ε] with >(Γ) = m0.

• Π = Defined by a multiset M̂ of pairs 〈σi ∈ Σ, µi ∈ µ〉 capturing non-dispatched, pending

asynchronous calls.
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• µ = variable 7→ Values.

• pc = List[pchead :: rest], where pchead is the currently executing instructions.

An Android application at any moment during its lifetime might have zero or more active

instances of its components. iC keeps track of these currently active instances. This help takes

decision, to what methods or event handlers a synchronous or an asynchronous method call will

be resolved to. There can be more than one active instances of a single Android Component

at an instance during the lifetime of an application. Γ defines the method Stack with a special

procedure >, defining the currently executing method of the application. Since the methods are

invoked both synchronously and asynchronously, not all the inovke instructions push the callee

on to the stack Γ. Since at any instance there are number of pending asynchronous calls which

need to be dispatched later. Π is a multiset of pairs 〈σi ∈ Σ, µi ∈ µ〉 where, µi is a sub-map of

µ such that the domain of µi ⊆ µ and co-domain of µi ⊆ µ. Intuitively, µi is a local map for the

variables in the context of σi. For example, it includes all the formal parameters of σi. The set

of all such µi can be represented as the power-set 2µ. We define a counter M̂ : (Σ× 2µ 7→ N),

returning a natural number for each pair, denoting the number of such pairs in the multiset Π.

Intuitively, Π records all pending call to a σi with a local heap value µi. Finally, the state

has a list of instructions, called as the pc. A pc has a head which denotes the currently executing

instruction, and a rest part and a terminal ε.

4.4.3.1 Active Components

At any time during the execution of the application, there are a set of live instances of different

Components of the application. For example, an instance of an Activity is alive when the

activity is running and the user can interact with it. We maintain a set of these alive instances,

represented here as iC. iC is a subset of abstract objects O†, such that each element of iC is

an object of an Component class.

4.4.3.2 Method Stack Γ

A configuration of an application is dependent on the method stack Γ which stores the active

methods and currently executing method as the top element of the stack. A method stack is

a stack of method records. A method record for method m, written as ψm is a binary tuple

< bm, µm >, representing the (body, data) pair of the method m. bm represents the body of

the method as a list [i1 :: i2 :: ... :: in] and data is a submap of µ, mapping the parameters and

receiving object reference to values. This is analogous to an Activation record for the method.

Thus, Γ = (ψm1 :: ψm2 :: ... :: ε), where ψm1 is the top of the stack and currently executing

method in a context µm1. The bottom of the stack is marked by an empty method record , ε.
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4.4.3.3 Asynchronously Pending Calls Π

Π defines a multiset of pending asynchronous calls to either a method m ∈ M or an event

handler σ ∈ Σ. Formally, Π is a multiset M̂ of pending methods and event handlers frames, λ.

A pending methods and event handlers frame λ is a pair ( (mi | σi), µmi | µσi), of a code mi

(σi) to be executed with submap µmi(µσi) of µ mapping the parameters for the mi(σi) to the

values.

Thus, an intent i passed to a component using startActivityForResult(i) will be stored in

Π as a mapping from the pair ((onCreate(), µ[li → oi , ...])) to an Integer n, where li is the

reference to the target component’s object oi. This captures the pending asynchronous call to

onCreate event handler of the object oi having a reference li.

4.4.3.4 Store µ

We define a store µ, mapping program variable, fields and references to values. For example,

each new instance of a class C will create an abstract object value o† which will be mapped

to a reference l by µ. Apart from the global store for the application, we also define submaps

µc such that dom(µc) ⊆ dom(µ), capturing a limited context c. Such a submap is useful in

defining a local calling context for a method or an event handler.

4.4.3.5 Program counter list pc

Finally, we define the instruction to be executed next using a program counter, pc. The pc is

not just a single instruction rather a list of instructions of the form [i1 :: i2 :: i3 :: ..., in], to be

executed with the currently executing one as the head of the list.

4.4.3.6 Initial State

Each Android application when started undergoes an initialization phase. During this phase,

the Android System reads the application’s manifest and creates an instance of the application

accordingly. This initialization phase defines the initial configuration of the application. The

initial configuration is defined as follows:

Initially, the set of active components is empty. Each Android application has a Main.LAUNCHER

component listed in its manifest. This is the component which gets created and invoked when

the application is first launched, either by the user or some other application. To capture

this semantic, the method stack is updated with a the entry point of the Main.LAUNCHER

(Main.LAUNCHER.onCreate() in case of an Activity component for example). This makes

the onCreate of the Main.LAUNCHER, the currently executing method. The initial update

of Π0 needs some elucidation. The definition uses a helper function methods which takes a

Class and returns the set of public methods or event handlers described in the method. For
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ω0 =〈iC0,Γ0,Π0, µ0, pc0〉 such that,

iC0 = φ
Γ0 = [(Main.LAUNCHER.onCreate()) :: ε]

Π0 =

{
M̂(σi, φ) = 1, ifσi ∈ methods(Main.LAUNCHER)

M̂(σj, φ) = 0, otherwise

µ0 = φ
pc0 = [Main.LAUNCHER.onCreate.start ::ε]

Figure 4.14: Initial State of an Application, ω0

Component classes, the function returns the set of life-cycle event handlers for the component.

Π0 is initialized based on two patterns, for all the σi in the methods(Main.LAUNCHER), an

entry (σi, φ) is added to Π, this is captured by updating the map M̂ for this pair. Other event

handlers and methods are not added to Π, which is shown as assigning a zero value to M̂(σj, φ).

Note that, there may be multiple LAUNCHER components and each may have multiple event

handlers. This is a sound over-approximation of the actual launching semantics. Initially, the

store µ0 is empty and pc0 is initialized with the entry expression of the onCreate handler of the

Main.LAUNCHER.

4.4.3.7 Auxiliary Methods

The definition and semantics for the abstract syntax make use of certain auxiliary methods.

These methods either check some property of some used element in the semantic rules or

processes the manifest and return certain results useful to define the semantics. We discuss

these auxiliary methods here:

Definition 4.2 (methods(Class)) Abstract method methods(Class), takes a name of a class(a

regular Java class or a component class) and returns a list of methods defined in the class (for

regular Java class) and a list of event-handlers definitions (for a Component class).

Definition 4.3 (mBody(m, Class, vi)) mBody(m, Class, vi), takes a method name m, a

class C and a list of values for formal parameters, and returns the body for m defined in C

along with the local map µm mapping the formal parameter variables to the given list of values.

If the method is not present in the given class, the method returns an empty body and empty

map.
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Definition 4.4 (target( invokeX (C::σ, vi)) We define an abstract method target, to resolve

to a target for invoke (mi | σi, vi) or invokeF (mi | σi, vi). For example, in a static method

invocation. For asynchronous calls to other components, either the call is explicit in which

case the target class is provided and the target is resolved to an active instance of the target

component class or in case of implicit calls, the target resolution is performed via Manifest

resource.

Definition 4.5 (instanceOf(object, className)) We define another abstract method in-

stanceOf, to check if a given object is an instance of a given class className. The check is

performed dynamically.

4.4.3.8 Operational semantics for Expressions

Figures 4.14 and 4.15, presents reduction semantics rules for expressions defined in the Android

syntax. The rules are defined over the state ω of the system. Each rule has the form ω; e;ω′,

representing the reduction of the state ω to ω upon execution of expression e. The rules R-

New-1 and R-New-2 present rules for new Instance creation for a regular Java class and an

Android Component class respectively. Both, extends the store, µ, with a new mapping from

the reference lc to the abstract heap object o representing the newly created object. The rule

R-New-2 also adds lc to the set iC containing the active instances. Besides this, both rules,

update the fields of the class with the parameter values passed to the constructor.

The R-Var is the simplest rule which returns the value for a variable x from the heap µ. The

richest and important rules are the next four rules. R-invoke-1 and R-invoke-sigma-dispatch

present rules for synchronous method invocation expression invoke(C :: m, vi) for the cases of

invocation of a methodm ∈M and dispatch of an earlier invoked event-handler σ. This dispatch

instruction is represented by an expression invoke(C :: σ, vi) for σ ∈ Σ. (R-invoke-1) gets the

pair of method body bm, and a map of formal parameters of method to values µm using the

earlier defined auxiliary method mBody(m,C, µ). The rule updates the state of the application

by bushing the method body on Γ for execution, updating(joining) the heap with the map µm

and updating the pc.head to the entry instruction of the invoked method bm. The semantics

of dispatch of an event handler is similar to a method invocation with two major differences.

Firstly, the rule R-invoke-sigma-dispatch checks that there is a pending asynchronous call for

the pair 〈bsigma, µsigma〉 by passing the pair to the map M̂ of Π and secondly, after the execution

of the expression this map is updated by decrementing the number of pending asynchronous

calls to the pair.

The rule for asynchronous call instruction R-invokeF. fetches the target for the given

invokeF(C :: σ, vi), which will be a pair of an event handler body bσ and a variable to value
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map µsigma. It then increments the pending asynchronous calls for (bσ, µsigma) by updating the

map M̂ of Π. Finally it updates the pc value to the next instruction. The rule R-return presents

a standard return semantics for a return instruction e in the currently executing method m

with a method body bm and formal parameters fi. It updated the method stack Γ and the pc

to the callee method and next instruction respectively.

Judgment form :: ω; e;ω′

R-New-1

K := C( Cg ){ super(ḡ ; this.f̄ = ḡ)}
C := C extends D { K̄ ; Cf ; ...}

K ′ := D (Cg′){...} ω := 〈iC,Γ,Π, µ, pc〉
ω; lc = new K(ē) ; 〈iC,Γ,Π, µ[lc 7→ o, fi 7→ ei], [K.entry::pc.next]〉

R-New-2

K := C( Cg ){ super(ḡ ; this.f̄ = ḡ)}
C := C extends CompC { K̄ ; Cf ; ...}

K ′ := D (Cg′){...} ω := 〈iC,Γ,Π, µ, pc〉
ω; lc = new K(ē) ; 〈(iC ∪ lc),Γ,Π, µ[lc 7→ o, fi 7→ ei], [K.entry::pc.next]〉

R-Var
µ(x) := vx pc := [x :: pc.next :: rest]

〈iC,Γ,Π, µ, pc〉;x; 〈iC,Γ,Π, µ, pc′ := [vx :: pc.next :: rest]〉

R-invoke-1

〈bm, µm〉 := mBody(m,C, µ)
bm := [s.entry :: ... :: s.exit]

pc := [invoke(C :: m, vi) :: pc.next :: rest]

ω; invoke(C :: m);ω′

where ω = 〈iC,Γ,Π, µ, [invoke(C :: m) :: rest]〉
ω′ := 〈iC,Γ′ := (bm :: Γ),Π, µ′ := (µ t µm), [s.entry :: ... :: s.exit :: pc.next :: rest]〉

Figure 4.14: Reduction semantics for Android applications (i)

4.4.4 Android Lifecycle Callbacks

Android applications follow a lifecycle for itself and each of its component instances for con-

sistent and optimum user experience and resource usage. These lifecycles are maintained by

various Android System services. The lifecycle governs the control flow of Android application
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R-invoke-sigma-dispatch

〈bsigma, µsigma〉 := mBody(σ,C, µ)
bsigma := [s.entry :: ... :: s.exit]

pc := [invoke(C :: m, ...) :: pc.next :: rest]

M̂(〈bsigma, µsigma) ≥ 1

ω; invoke(C :: sigma, vi);ω
′

where ω = 〈iC,Γ,Π, µ, [invoke(C :: σ, vi) :: rest]〉
ω′ := 〈iC,Γ′ := (bsigma :: Γ),Π′ := Π[M̂((〈bsigma, µsigma)) := M̂(〈bsigma, µsigma)− 1], µ′ :=

(µ t µm), [s.entry :: ... :: s.exit :: pc.next :: rest]〉

R-Return

Γ := [bm :: bn :: rest]
m := Cm(Cfi){bm}

µ(fi) =: vi
bn = [ :: invoke(bm, v′i) :: sn :: rest]]

ω; return e;ω′

where ω = 〈iC,Γ,Π, µ, pc〉
ω′ = 〈iC, ((bn :: rest),Π, (µ), pc = [sn :: rest]〉

R-invokeF

〈bσ, µsigma〉 := target(invokeF(C :: σ, vi))
pc = [(invokeF(..) :: rest)]

ω; invokeF(C :: σ, vi); 〈iC,Γ,Π[M̂(bσ, µsigma) 7→ M̂(bσ, µsigma) + 1)], [rest :: ε]〉

Figure 4.15: Reduction semantics for Android applications (ii)

104



to a great degree, hence modeling of Android control flow requires a correct model of lifecycle

callbacks of application components.

In this section we present a formal control flow semantics Android Component lifecycles for

Activities.

Android component life cycle is modeled as a directed graph (refer Chapter 2), such that

nodes of the graph are the life cycle event handlers σ ∈ Σ, like onCreate, onPause etc., while

an edge (σ1, σ2) from node σ1 to σ2 represent the possible control flow from σ1 to σ2. We can

also represent such a graph using an ordering relationship � over event handler set Σ, thus

representing (σ1, σ2) as (σ1 � σ2).

Figure 2.4 represents the lifecycle callback graph for Android Activities, note that it includes

only the major life-cycle callbacks which every Android application needs to override, there are

some other events handling methods which might be called in between these calls to handle

certain events which we are ignoring here to make the explanation simple. These extra event

handlers could be modeled and their semantics defined in a similar way. The directed graph

in Figure 4.16, shows a simplified lifecycle callback graph for Android activities. The graph

correctly models any possible lifecycle callbacks control flow in Android Activity, meaning all

valid control flows between lifecycle callbacks for any Activity will have a corresponding path

in the graph.

The control flow semantics for a component lifecycle callback defines a reduction rule for

each tree rooted at a node in such a lifecycle graph. Figure 4.17 list these rules for lifecycle

callbacks for a typical Android Activity component. Before we discuss these semantics, we

present some formal definitions needed to define these control flow semantics.

4.4.4.1 Activity Stack (α)

An Android activity looses and gains focus based on the user action, for example an activity is

in focus when it is occupying the whole screen and user can interact with it, if we start another

Activity from this Activity, the current Activity goes in the background and the new Activity

occupies the screen and gets focus. Once the user hits the back button on the new Activity the

earlier Activity again comes into focus while the current Activity is killed. Android models this

stack behavior of Activities via Activity stack. Following definitions give a formal definition of

Activity stack.

Definition 4.6 (Activity Frame (ψ)) An Activity Frame ψ is a tuple 〈f, s, η, γ〉 which is an

abstraction of each activity in the stack [ψ1 :: ψ2 :: ... : ε] of Activity frames of active Activity

instances. This is called as Activity Stack . An Activity stack is an analogue of the Activity

stack maintained by Android ActivityManager Service, which maintains the life cycle of Android
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Figure 4.16: Activity lifecycle graph

Activity and other components. A in this stack defines the configuration of an activity in the

activity stack, with f representing the reference to the activity, s representing the current state

of the activity, where an activity state could be on of {resumed, paused, stopped or destroyed (φ)

states}, η is the multiset of the pending activities invoked asynchronously from this activity via

invokeF expression and finally γ is like Γ defined earlier in the context of the current activity,

representing the method stack. It contains a stack of pairs (σ ∈ Σ, r ∈ V ar) with the top of the

stack representing the currently executing method and the reference to the the current activity

instance.

4.4.4.2 Lifecycle reduction rules

Figure 4.17 defines the set of lifecycle transition rules for an Activity component over the

configuration defined by the current Activity frame ψ. Each rule in the figure is of the form ψ ⇒
ψ′. A rule represents the transition of an Activity instance when the currently executing Activity

lifecycle callback method finishes execution. For example, Rule reduce-onCreate, presents the

transition of the activity frame when the Activity finishes executing the onCreate method. It

says, the state of the activity goes from stopped to paused and the onCreate method is popped

from the stack γ and onStart method is pushed on it, as defined by the lifecycle for an Activity.

The σj shown in many of these rules represents possible target lifecycle method(s) based on

the activity lifecycle rules of Android. For example, σj for reduce-onStart rule says, that the

Activity lifecycle rules allow the control to flow from (onStart to onResume) or (onStart to

onStop).

Next 6 reduction rules from (reduce − onStart to reduce − onDestroy), presents similar
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lifecycle control flow semantics at the end of each callback onStart to onDesroy. The callbacks

which have more than one possible immediate successors, like onStart and onStop, have tran-

sitions defined corresponding to each of these successors and actual runtime trace will depend

on the user or system events. The last rule onDestroy describes the end of the life cycle for

the current activity, it updates the state of the activity as destroyed and the reference for the

activity is destroyed and represented as f⊥.

Judgment form :: ψ ⇒ ψ′

reduce-onCreate

s = stopped
γ = ((onCreate, f) :: γ′)

f : s : η : γ ⇒ f : s′ = paused : η : ((onStart, f) :: γ′)

reduce-onStart

s = paused
γ = ((onStart, f) :: γ′) σj = (onResume|onStop)

f : s : η : γ ⇒ f : s′ = resumed | stopped : η : (((onResume|onStop), f) :: γ′)

reduce-onResume

s = resumed
γ = ((onResume, f) :: γ′) σj = (onPause)

f : s : η : γ ⇒ f : s′ = paused : η : ((onPause, f) :: γ′)

reduce-onStop

s = paused
γ = ((onStop, f) :: γ′) σj = (onRestart|onDestroy)

f : s : η : γ ⇒ f : s′ = stopped : η : (((onRestart|onDestroy), f) :: γ′)

reduce-onPause

s = paused
γ = ((onPause, f) :: γ′) σj = (onResume|onStop)

f : s : η : γ ⇒ f : s′ = resumed| stopped : η : (((onResume | onStop), f) :: γ′)

reduce-onRestart

s = stopped
γ = ((onRestart, f) :: γ′) σj = (onStart)

f : s : η : γ ⇒ f : s′ = paused : η : (((onStart), f) :: γ′)

reduce-Destroy

s = stopped
γ = ((onDestroy, f) :: γ′) σj = φ

f : s : η : γ ⇒ f⊥ : s′ = destroyed : η : (ε)

Figure 4.17: Control flow semantics for Activity lifecycle callbacks
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Before we discuss in detail the definition and construction of a sound intermediate repre-

sentation of an Android application called Android Inter-Component Control Flow Graph and

discuss how it over-approximates the semantics discusses in the last section, we present a set

of examples showing unorthodox control flows in an Android application and how our formal

semantics model these flows.

• Initialization: Each Android application has an initialization phase. During this phase,

the Android system reads the associated Manifest and instantiates vital components of the

application. For example, the Android system finds the Main.LAUNCHER component

of the application and creates an instance of it. Further, it makes a synchronous call

to the creation callback of the component. This initialization phase is modeled by a

combination of semantics rules, specifically, the initial state of the applications, parses

the Main.LAUNCHER component and asynchronously invokes its creation callback. This

increments the number of pending calls to this callback.

• Synchronous Calls and returns

The basic synchronous method invocations and returns of Java semantics are captured

by the invoke(code, data) expression and the semantics rules R-invoke-1 and R-Return as

described in Figures 4.14 and 4.15.

• Asynchronous ICC calls

One of the most important control flow features which makes the control flow in Android

applications substantially different from simple Java applications and which makes other

formal modeling and static analyses either unsound or imprecise is the asynchronous

call semantics of Inter-Component Communication (ICC) and other asynchronous calls.

The asynchrony available in these control flow features is modeled in our semantics by a

dedicated asynchronous call expressions invokeF(code, data) and its associated semantics

discussed in operational semantics rule R-invokeF as described in Figures 4.15. Besides

this, the asynchronous call semantics is sprinkled implicitly across different rules, like

the initial state of an application, component lifecycle rules and component creation and

destruction rules.

• Lifecycle callbacks

As discussed earlier, each of Android application components has a lifecycle associated

with it (refer Chapter 2). These lifecycles are ordered graph between various lifecycle

callback methods like onCreate, onStart, etc. These callbacks are asynchronously called
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by the Android system (Android ActivityManager Service). These callbacks, along with

asynchronous ICCs, provide most of the convolution in Android application control flow

making it hard to comprehend and analyze. The lifecycle associated with components is

modeled explicitly in our component lifecycle semantics (refer figures 4.17). For instance,

the lifecycle reduction rule for Activity’s onCretae, viz. (reduce-onCreate) defines how the

control flows from onCreate to onStart method of the Activity when the control reaches

the terminal expression (skip) in onCreate.

• Atomicity of lifecycle and other callbacks

Another example feature of Android applications, which affects the control flow is the

atomic execution of lifecycle callbacks. Ignoring this may cause either unsoundness or

imprecision. The atomicity is modeled in the semantics implicitly in each of the lifecycle

callback reduction rules. For instance, the generic recursive reduction rule for Activity

or Service lifecycle checks that the currently executing instruction is the end instruction.

This instruction is tagged by the mandatory skip expression in an event handler definition.

4.5 Soundness of the Control flow Graph and Analysis

In this section, we provide the basic assumptions about the Android model we are going to

discuss in this chapter, and precisely define the meaning of the term soundness of the Control

flow graph (AICCFG) for the application and soundness of the static analysis. This will aid in

a more cogent elaboration of the ideas in coming sections.

4.5.1 Assumption on Android Applications

In next two sections, we provide syntax and asynchronous control flow semantics for “single-

threaded” applications with “non-preemptive” execution of lifecycle and other callbacks. This

syntax and semantics captures the asynchronous calls and callbacks, Android Inter-Component

communications (ICCs), Android components lifecycle and interaction between them. This

assumption of single-threaded applications restricts our modeling and analysis to a subset of

Android applications, yet it covers a large number of useful Android applications which are not

multi-threaded. The general case of statically analyzing asynchrony and concurrency together

is undecidable even for the simplest problem of reachability over control flow graph [109] and

needs a different approach to analysis. We leave approximate solutions to this general problem

as a possible future work.
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4.5.2 Android Application Control Flow Graph

In Section 4.3, we present an Android Inter-Component Control Flow Graph (AICCFG), an

intermediate program representation capturing the asynchronous control flow in Android ap-

plications. Detailed definition of AICCFG, its construction algorithm and other features are

discussed in Chapter 4. Intuitively, the AICCFG captures Android asynchronous control flow,

Android ICC, the Android system enforced Component and application lifecycle, event handling

callbacks and other control flow governing features. The AICCFG acts as an input program to

the asynchronous static analysis algorithm.

4.5.3 Soundness of Control Flow Graph

A sound static analysis for Android applications inherently requires the program representation

to correctly capture Android asynchronous control flow and other features. This gives rise to

the definition of “soundness” for the AICCFG.

Definition 4.7 (Soundness of AICCFG) For a given single-threaded Android application

A, with non-preemptive execution of lifecycle and other callbacks (based on the assumed model

defined above), we say that the AICCFG GA generated for this application is sound, if for any

possible execution trace tr of A (a sequence of instructions), there exists a possible path ptr in

GA, such that the string generated by the edges of the path ptr (a sequence of instructions) is

equal to tr.

4.5.4 Soundness of a Static Analysis

“Soundness” of a static analysis is a standard term and we use it in a similar sense. A Static

analysis, checking a property φ over a program P is sound if whenever P can violate φ during

some execution of P , the analysis must track this violation. This definition is defined in terms

of static analysis checking a property violation, a more general definition of soundness of static

analysis can be found in [97]

4.6 Typestate Analysis

Typestate [115] is a refinement over type. Whereas the type of a data object defines the

set of operations that are ever permitted on the object, typestate defines the subset of these

operations that are valid in a given context. For example, Java Collections class allows getting

the next element from the collection (call to Collections.next()) only if the collection has another

element in the collection, else it throws an IllegalStateException. Static typestate analysis could

be highly useful in catching programs which might be syntactically legal but meaningless or

110



semantically invalid[52]. In the absence of typestate analysis, the programmer needs to perform

runtime checks and adhere to the API usage rules which hamper performance and is error-prone.

Android framework provides a large set of resources like Camera, MediaPlayer, Databases,

etc., to be used by applications through APIs. Some of these resource APIs, (e.g., Android

MediaPlayer) have a fairly complex protocol [6], making it difficult and error-prone to be

enforced by the programmer. The violations of these protocols could have effects ranging from

benign application crash to providing attack surfaces to attackers breaching application and

user security.

Apart from the resource APIs, many other important safety properties in Android appli-

cations (like granting and revoking of UriPermissions) could be modeled and verified using a

typestate analysis. Control flow soundness and precision requirements of typestate analysis

make it challenging for Android applications.

4.6.1 Android Typestate Analysis

This section defines a typestate analysis for Android over the control flow semantics and the

AICCFG defined earlier. The analysis is the first typestate analysis for Android applications.

We model our typestate problem as an asynchronous interprocedural finite distributive subset

(AIFDS) problem [68]. Although our asynchronous analysis derives from that work in theory,

the following are the challenges which are specific to asynchronous inter-component analysis on

Android applications-

• Android ICC calls have a complex runtime semantics and lack explicit asynchronous

calls and returns. The asynchronous calls are either due to ICC or callbacks from the

framework to the application. Moreover, these are asynchronous calls to a collection of

callback methods rather than a single target method, which needs to be resolved either

explicitly or using the manifest. Once the target is resolved, all the valid paths should be

invoked based on the called component type and its lifecycle.

• Contrary to the definition of valid paths in [68], valid paths for the AICCFG discussed in

section 4.3, are a function of both pending asynchronous calls, and application’s compo-

nent lifecycle rules. Thus we need a modified version of the original asynchronous data

flow analysis (ADFA) algorithm to soundly calculate the meet-over-valid-path (MVP)

solution over these valid paths of the application.

Our analysis like original AIFDS contains a dispatch node (vd). Since both the works try

to model the event-loop or the environment using this node, there are numerous similarities
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between the two. However, there are many important differences in the dispatch node semantics

(or challenges unique to AIFDS for AICCFG) other than the syntactic differences listed above-

• The semantics of the event-loop (and hence the dispatch node) in Android is substan-

tially more complex than the semantics of the general asynchronous call and dispatch

as discussed in the AIFDS work. For example, consider the semantics of an Activity’s

onStart method. The onStart method can be dispatched multiple times in a life-time of

an Activity based on the user interaction and life-cycle automaton associated with Ac-

tivities. Thus, the dispatch node, requires to keep the onStart method in its pending list

at all time (even after it is dispatch) before the Activity is destroyed. This is different

than the one-to-one mapping with single incrementing (decrementing) of pending calls to

a method on asynchronous call (asynchronous dispatch) in AIFDS. The dispatch node as

modeled in the original AIFDS work does not model this.

• The above difference is not specific to a single Component type or a method, rather more

generally the dispatch node in our work models the semantics associated state changes

due to the lifecycle machine of the component. For example, the semantics of a return

from an Activity’s onPause method, will add a pending asynchronous calls to all the

possible targets in the lifecycle machine of an Activity, i.e. {onResume, onStop}.

• Each component has a destructor method, for example onDesroy for an Activity. The

semantics of a destructor is very different than the other methods in the lifecycle. The

event-loop before destroying the component, dispatches all of the pending calls to the

component’s methods (dispatching multiple times if required). Thus again a dispatch to

a single method may affect the semantics of the dispatch node for all other calls. The

original AIFDS always has injective relation between call and dispatch of asynchronous

methods.

Formally an AIFDS formulation of the Android typestate analysis problem is defined as

follows-

Definition 4.8 (Typestate Property, FA) A typestate property to be verified, is represented

as a finite automaton FA = 〈Σ,Q, δ, S,Q \ {err}〉 where Σ is the set of operations possible on

objects, Q is the set of typestates a resource object might exist in, δ : Q × Σ → Q . err is a

single error state, S is a unique start state and Q \ {err} (all the states other than the error

state) contains final states.
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initstart open

error

open

release, startFD, startP

startFD, startP
release

open

open, release, startFD, startP

Figure 4.18: Simplified Typestate property finite automaton for Android Camera API: startFD
:= startFaceDetection, startP := startPreview

For example, Figure 4.18 presents a simplified version of the typestate property finite au-

tomaton for the Android Camera resource API. The actual Camera resource have a much larger

set of public methods which we have ignored here to make the figure easier to understand.

Resource usage protocol for Android Camera resource is simpler than many other Android

resources. For instance consider Figure 4.19. It shows the protocol or the typestate property

finite automaton for MediaPlayer API in Android. The figure is adapted from the official

Android portal.

Definition 4.9 (Typestate Mapping Function, α) We define α : Ref 7→ 2Q, a typestate

mapping function from the object reference set Ref , to the powerset of Q. α(ri) represents

the set of possible typestates a given reference ri ∈ Ref could have at a given program point.

The references set Ref is a set of symbolic object references, each of which may-point to a

symbolic object instantiated at some location(intermediate representation line number) in the

program. We run a standard intra-procedural may-points to analysis and must-points to analysis

to associate a may-alias and must-alias set for each symbolic reference.
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Table 4.2: Typestate Transfer Functions

Transfer Functions F
S.No. Statement, st (dg, dl, CMap) → Out Side Conditions
1 new C() (dg, dl, CMap) →

(dg,dl ∪ {(soi, {FA.start})}, CMap)
(C ∈ resourceclasses ∧
Statement st defines a
method local reference. ∧
soi /∈ SO)

(dg, dl, CMap) →
(dg∪{(soi, {FA.start})}, dl, CMap)

(C ∈ resourceclasses ∧
Statement st defines an
application level referenc.
∧ soi /∈ SO)

(dg, dl, CMap) →
(dg, dl, CMap)

otherwise

2 startActivity(target)
| startXYZ(target)

(dg, dl, CMap) →
(dg, dl, CMap[(rt, init(), dl) ←
(CMap(rt, init(), dl)++),
(rt, onX(), dl) ← (CMap(rt, onX(),
dl)++)]

rt ← getTartget(st)

3 dispatch(m(), dl) (dg, dl, CMap) →
(dg, dl, CMap[(rt, init(), dl) ←
(CMap(rt, init(), dl)−−),
(rt, onCreate(), dl)← (CMap(rt, on-
Create(), dl)−−)]

(m = rt.init() ∧ CMap(rt,
init(), dl) > 0)

(dg, dl, CMap) →
(dg, dl, CMap)

(m = rt.onX() ∧ CMap(rt,
onX(), dl) > 0 ∧ onX() 6=
onDestroy())

(dg, dl, CMap) →
(dg, dl, CMap[(rt, onX(), dl) ←
(CMap(rt, onX(), dl)−−)]

(m = rt.onDestroy() ∧
CMap(rt, onDestroy(), dl)
> 0)

4 Normal statement (dg, dl, CMap)) →
d′g, d

′
l, CMap)

d′g ← transferTS(st, dg, FA)
d′l ← transferTS(st, dl, FA)

5 startService(target)
| bindSer-
vice(target)

(dg, dl, CMap) →
(dg, dl, CMap[(rt, init(), dl) ←
(CMap(rt, init(), dl)++),
(rt, onX(), dl) ← (CMap(rt, onX(),
dl)++)]

rt ← getTartget(st)
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Figure 4.19: Typestate property finite automaton for Android MediaPlayer API source: [7]

4.6.2 Typestate as an AIFDS Problem

We describe the Android typestate verification problem as an AIFDS [68] instance. An AIFDS

problem is an asynchronous version of an interprocedural finite distributive subset (IFDS)

problem [110] for calculating MVP solutions over asynchronous programs. An AIFDS instance

is a six-tuple, A = (G∗, Dg, Dl, CMap, F,t), which we solve using a modified ADFA algorithm

to track typestate violations for a given application and a typestate property. We define each

of these tuples of A now in detail.

4.6.2.1 The Program Representation, G∗

The AICCFG G∗=(V∗, E∗), defined in section 4.3, acts as the input for our AIFDS analysis

instance.

The typestate analysis also requires a typestate property automaton FA for the resource

object as an input. In our current prototype implementation, the user needs to provide this
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property automaton for the resource following the resource APIs documentation. We have

provided such automata for important resource types for Android like Camera, MediaPlayer,

File, SqliteDatabase, etc. in our implementation.

4.6.2.2 Data Flow Facts

Since AICCFG is an asynchronous program representation, we need to split each typestate data

flow fact into global and local component rather than having a single global data flow fact.

Such a division is necessary because, at the point of the asynchronous call, we need to capture

incoming data flow facts, passed to the called procedure. We then store this asynchronous call

as a pending call with these facts to be dispatched later. We cannot use a single global set

of facts to represent the input fact for the pending call because operations that get executed

between the asynchronous call and actual dispatch may change the global fact, leaving the local

fact unchanged at the callsite.

The data flow facts D = (Dl ×Dg × CMap), where:

• Dg and Dl are global and local typestate dataflow facts. The data flow facts associated

with globally defined variables, static fields and class references are treated as global

dataflow facts. These are treated differently than the local data flow facts. Local data flow

facts are the data flow facts associated with method local variables, fields and references.

For example, a data flow fact showing a possible set of states of a global Camera reference

visible to all components will be a global data flow fact Dg, while another such fact for a

method or component local Camera reference, will be a local data flow fact Dl.

Each data flow fact dg ∈ Dg or dl ∈ Dl is a pair of the form (soi, {si, sj..., sm}) where soi ∈
SO. The SO ⊂ Ref and is the set of symbolic object references for the resource objects,

while Ref is the set of object references in the application. Each si ∈ Q, represents the

possible set of typestates a given resource object soi could be in, at a given program point.

• CMap : (Ref×Methods×Dl) 7→ N , where Ref is the set of object references as described

earlier, Methods is the set of methods (callbacks, event handlers and normal methods),

and N is the set of natural numbers. Intuitively the map CMap, captures the number

of pending asynchronous calls not yet dispatched for a given method m ∈ Methods, of

an object reference ri ∈ Ref with a given local data flow fact dl. If there are no pending

calls for the triple consisting of a given reference, method and local data flow facts, CMap

maps the triple to 0.
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4.6.2.3 Transfer Functions F for Typestate Analysis

Table 4.6.2.3 defines the set of transfer functions F for the problem. The columns give the

rule number, the statement type, the transfer function and the side condition in which this

function is applied. Each row for a given statement type is subdivided into subrows, defining

the functions for a given side condition. Rule 1 applies to an object instantiation statement and

Android resource initialization API calls. The rule first checks if the class being instantiated

is a resource class (e.g. Android’s Camera class), then it creates a new symbolic object soi

for the resource, initializes its typestate to the FA’s start state S and updates the local or the

global data flow facts depending upon whether the statement defines a method local reference

or an application level global reference. Rule 4 defines the transfer function which applies the

FA’s typestate transition δ based on the incoming typestates and the operation performed on

the symbolic object. The auxiliary function transferTS(), takes a statement (an operation),

a data flow fact dg/dl (containing the current state) and the typestate property automata FA

and returns an output data flow fact d′g/d
′
l (containing the target state). These operations do

not alter the pending calls and hence the output CMap is the same as the incoming CMap.

Rule 2 defines the transfer functions for asynchronous calls like startActivity, startService or

startXYZ in general representing an ICC call. Android framework invokes a sequence of calls

(modeled by init method in our AICCFG) on component creation. To model this semantics,

this rule increments the pending calls for (rt, init(), dl). Once a component is created, the

framework may invoke any lifecycle callback of the component. Hence we also increment the

pending calls for other callback methods (rt, onX(), dl). We have used ‘onX()’ for a generic

callback method name (e.g. onStart(), onResume(), etc.). Rule 3 defines the transfer functions

for the asynchronous dispatch of method m with data flow fact dl from the special dispatch node

vd of AICCFG. It checks if the dispatched method m is an initialization method init and has

a pending call with the given dl, then it dispatches the call and decrements the corresponding

CMap cells for (rt, init, dl) and (rt, onCreate(), dl). The onCreate() is called only once during

the lifetime of a component instance, hence we decrement its counter here during initialization.

If the call is neither to init nor to a component destruction method like onDestroy(), the

function just dispatches the call without modifying the CMap. Android Activity component

callback methods other than onCreate() and onDestroy() (similarly, for creation and destruction

callback methods of other component types) can be invoked any number of times during the

life time of the component due to some user or system event. Hence we do not decrement

the pending calls to these methods here. Finally, the call to component destruction method

like onDestroy(), decrements the pending calls for all the asynchronously called callbacks and
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the init() method for the given object in the CMap as the object is now dead and none of its

callbacks could be invoked by the framework.

4.6.2.4 The meet operation t

The meet operation defines the meet of data flow facts along two or more different paths in the

AICCFG. Our typestate analysis is conservative in nature and thus performs a weak update to

typestate associated with any abstract object soi. At junction nodes with two or more different

incoming paths we perform a set union operation over the α(soi) for each soi ∈ SO. Formally,

for any merge node p in the AICCFG of the application and for each abstract object soi, the

meet ∪ is defined as a union over the α(soi) over all the valid interprocedural paths pi starting

from the start of the ambiance and merging at p.

For our analysis, we modified the ADFA algorithm(refer Chapter 2) [68], to handle asyn-

chronous calls and dispatch semantics of Android applications. The major modifications are

needed to handle the different semantics of asynchronous calls and dispatches discussed in the

original ADFA algorithm compared to the semantics of Android applications calls and dispatch.

For instance, while the original algorithm assumes explicit asynchronous calls and return points,

ICC’s and other asynchronous calls in Android application are not explicit, further an asyn-

chronously called or dispatched method (or a single call can cause multiple invocations) may

lead to further set of chained asynchronous calls. Besides, an asynchronously called/dispatched

method(s) do not have an explicit return points.

Second major difference arises due to the lifecycle semantics of Android components de-

scribed earlier. This effects the way Counter maps are updated by the algorithm. For example,

unlike the original ADFA algorithm, where an asynchronous dispatch will decrement the num-

ber of pending asynchronous calls for a pair of method and local data flow facts, in Android,

a dispatch may not effect the number of pending calls as the lifecycle allows further execution

of an lifecycle handling method. This is a common scenario in case of an Activity component,

where the lifecycle is intricate.

We then ran the modified ADFA to calculate MVP(I1) and MVP(I1
∞), refer [68]. We did

not need to run for higher values of k=2,3... as the MVP(I1) and MVP(I1
∞) converge for our

typestate analysis problem over the benchmark applications we ran on.

4.7 Implementation

The overall implementation of our approach has two major components- (1) AICCFG generator

and (2) A typestate analysis for Android applications.
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4.7.1 AICCFG Generator

The AICCFG generator generates a sound AICCFG for the application using the AICCFG

algorithm 1. The algorithm uses certain auxiliary methods like getLaunchers, getPublicComps,

getICCCalls, and getComponentCfgs. These methods gather information and create graphs for

each component which acts as input to the createAmbiance and createAICCFG routines. We

explain, each of these briefly:

• getLaunchers : Android applications have one or more components defined as LAUNCHER

or MAIN components of an application. These components act as main entry points to

an application when the application is invoked by a user. A component is registered as a

LAUNCHER/MAIN component in application’s Manifest, using intent-filters for action

and category tags. For example,

〈 action android:name=“android.intent.action.MAIN”/〉

〈 category android:name=“android.intent.category.LAUNCHER”/〉

The getLaunchers method, parses the Manifest file and finds an activity or other com-

ponents registered as MAIN or LAUNCHER components using above intent-filters, and

returns a list of such components. The createAmbiance routine uses this information to

generate instructions which instantiate these components.

• getPublicComps: Not all the components of an Android application are visible to the

outer world for invocation. A component can be invoked by a user or another component,

via an ICC, only iff it is a public component. A component shows its intention of being

public by registering for receiving external intents (refer Chapter 2). This is done either

via setting the value of exported tag as TRUE, or by defining an intent-filter for the

component. A component registered for some intent, using an intent-filter is implicitly

treated as a public component by the Android system. Such components may act as other

entry points to the application on some ICC from other applications or Android system

processes. The getPublicComps method, parses the Manifest file and finds such public

components by looking for appropriate tags and returns a list of such components. The

createAmbiance routine uses this information to generate instructions which instantiate

these components.

• getICCCalls: The ambiance need to create instructions to instantiate each component

which might be invoked via some asynchronous ICC, from a launcher or a public compo-
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nent. This helps the createAICCFG method to generate a complete control flow graph

for the application. The getICCCalls method performs a static analysis of the appli-

cation to find such components. It performs an intraprocedural string analysis and a

flow-insensitive points-to analysis, to search for component names that are passed as ar-

guments to some ICC API calls like, startActivity, startService, startActivityForResult,

etc. (in case of explicit ICC calls), and for action and data tags of such ICC calls (in

case of implicit ICC calls). The createAmbiance routine uses this information to generate

instructions which instantiate these components.

• getComponentCfgs: The getComponentCfgs, generates a component control flow graph

for each component in the application. The method takes as input the earlier gener-

ated list of public and launcher components and generates instructions for control flows,

which model life-cycle associated control flow for the component. It then uses known

static control flow graph generation techniques (for example on-the-fly cfg generation

from Soot [119]) to generate a precise control flow graph for each component. The cre-

ateAICCFG method, uses these cfgs to generate Android inter-component control flow

graph (AICCFG).

4.7.2 Typestate Analysis

The typestate analysis is modeled as an instance of AIFDS problem [68] and is solved using

a modified ADFA [68] built using Soot’s heros IFDS implementation [119]. The typestate

analysis, uses the AICCFG generated by the AICCFG generation algorithm as the program

input and implements the transfer functions presented in table I. The implementation solves the

AIFDS instance of the typestate problem using a variant of the ADFA algorithm for Android

applications calculating under- and over-approximate MVP results.

4.8 Evaluation

4.8.1 AsyncBench Benchmarks

We present a set of synthetic benchmark applications, AsyncBench [4], containing tests for

typestate violations whose verification requires a sound modeling and tracking of control and

data dependencies in Android applications including the asynchronous semantics and sound

lifecycle modeling. Although the benchmarks are small applications, the sound asynchronous

control flow modeling presented by us is generic and we believe that the AICCFG construction

algorithm is scalable. We leave the scalability studies and further evaluations of our client

typestate analysis as future work. Table 4.3 concisely presents the salient features of each type of
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application for each resource category. The four types of applications in each resource category

test the correct modeling of asynchronous calls and lifecycle interleavings as discussed earlier

in Section 4.3, and the precision of these models (via benign applications with no typestate

violations).

App-
type

Salient Features

Type0 No typestate violation.
Type1 Single typestate violation, requires sound asyn-

chronous semantics modeling.
Type2
and
Type3

Single typestate violation, requires sound asyn-
chronous semantics modeling and sound lifecycle inter-
leaving across components. These two types model two
different interleavings between callbacks.

Table 4.3: Benchmark Applications

The aim of these benchmarks is two-fold. First, they check the coverage and soundness of the

analysis for asynchronous calls and lifecycle properties of applications. Second, we add applica-

tions in various categories using different Android resources, namely Camera, SQLiteDatabase,

MediaPlayer, Files, etc. This checks the usability angle of our analysis and shows that the

analysis is generic enough to capture typestate violations against a rich set of Android resource

usage protocols. Towards the similar goal, we also have applications, modeling the safe granting

and revocation of Android UriPermissions. Android framework provides UriPermissions, which

allows an application to grant temporary read/write access permissions (for its resource) to

other applications. These UriPermissions are useful for ContentProviders to grant permissions

to other applications to temporarily access some or whole of their data. This is done either

by setting an Intent flag like, Intent.FLAG GRANT READ URI PERMISSION or by invoking

the grantUriPermission() method of the Android ContextWrapper class. One possible bug in

the usage of these temporary UriPermissions is the leak of these permissions when the grantor

forgets to revoke the permissions through corresponding revokeUriPermission() call. Typestate

can easily model and check such permission leaks by checking any UriPermission granted tem-

porarily is always revoked before the granting component is terminated and a URIPermission is

not revoked without being granted before. Next, we discuss one of these benchmarks briefly, we

have made these benchmarks publicly available online [4] with comments explaining the details

of typestate properties associated or being violated.
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4.8.1.1 Camera Applications

This set of applications use Android Camera APIs. The typestate property associated with the

Android Camera resource can be modeled (in a simplified way) via the typestate property finite

automaton presented in Figure 4.18. The applications fall into four application types as dis-

cussed in Table 4.3 and require the analysis to soundly capture the asynchronous ICC semantics,

lifecycles semantics and possible interleaving between them. The Cameraapp 0 application has

no typestate violation while the other three have a single typestate violation. Listing 4.1 shows

the code fragment for the Cameraapp 1. The application consists of two activities, viz., FirstAc-

tivity(FA) and CaptureImageActivity(CIA). The application contains a typestate violation in the

CaptureImageActivity’s onStart method (line number 30, 31) caused due to control flow from

FA’s onCreate, FA’s onResume to CIA’s onStart method. The state-of-the-art, asynchrony-

unaware static analysis works handle the ICC call at line number 50 synchronously and thus

miss the possible state change of the Camera resource occurring at line 60 in FA’s onResume

method occurring before the actual dispatch of the ICC. We compare our approach against

other asynchrony-unaware static analysis works in next section. Other Camera benchmark ap-

plications and applications in other resource categories are publicly available [4] with required

comments explaining the details of the typestate property being verified and possible violation

of the property.

Listing 4.1: Code Fragment for Cameraapp 1 Application from AsyncBench Suite

1 package com.iisc.android.typestatebenchcamera_01;

2 import android.support.v7.app.ActionBarActivity;

3 import android.support.v7.app.ActionBar;

4 import android.support.v4.app.Fragment;

5 import android.content.Context;

6 import android.content.Intent;

7 import android.content.pm.PackageManager;

8 import android.os.Bundle;

9 import android.util.Log;

10 import android.view.LayoutInflater;

11 import android.view.Menu;

12 import android.view.MenuItem;

13 import android.view.View;

14 import android.view.ViewGroup;

15 import android.os.Build;

16 /*
17 * @description - App violates the typestate property of Camera,

18 * @requires - Sound model of Asynchronous call

19 * @unsoundness_leadsto - FN - (FA.onStart -> FA.onResume -> CIA.onStart )

20 */

21 public class FirstActivity extends ActionBarActivity {

22 public static final String TAG = "FirstActivity";

23 public static android.hardware.Camera mycam= null;
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24 @Override

25 protected void onCreate(Bundle savedInstanceState) {

26 super.onCreate(savedInstanceState);

27 setContentView(R.layout.activity_first);

28 Log.i(TAG, "onCreate");

29

30 }

31 @Override

32 protected void onStart() {

33 // TODO Auto-generated method stub

34 super.onStart();

35 Log.i(TAG, "onStart");

36 if(checkCameraHardware(this))

37 Log.d(TAG, "The device has a camera");

38 else

39 Log.d(TAG, "No Camera on the device");

40 try {

41 mycam = android.hardware.Camera.open(0); // attempt to get a Camera instance

42 Log.d(TAG, "Camra "+mycam);

43 }

44 catch (Exception e){

45 // Camera is not available (in use or does not exist)

46 Log.d(TAG, "Exception"+ e.getMessage());

47 }

48 Log.d(TAG, "Cam "+mycam);

49 Intent startCaptureActivity = new Intent(this, CaptureImageActivity.class);

50 startActivity(startCaptureActivity);

51 mycam.startPreview();

52

53 }

54

55

56 @Override

57 protected void onResume() {

58 // TODO Auto-generated method stub

59 super.onResume();

60 mycam.release();

61 }

62

63 @Override

64 public boolean onCreateOptionsMenu(Menu menu) {

65

66 // Inflate the menu; this adds items to the action bar if it is present.

67 getMenuInflater().inflate(R.menu.first, menu);

68 return true;

69 }

70

71 @Override

72 public boolean onOptionsItemSelected(MenuItem item) {

73 // Handle action bar item clicks here. The action bar will

74 // automatically handle clicks on the Home/Up button, so long

75 // as you specify a parent activity in AndroidManifest.xml.

76 int id = item.getItemId();
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77 if (id == R.id.action_settings) {

78 return true;

79 }

80 return super.onOptionsItemSelected(item);

81 }

82

83 /**
84 * A placeholder fragment containing a simple view.

85 */

86 public static class PlaceholderFragment extends Fragment {

87

88 public PlaceholderFragment() {

89 }

90

91 @Override

92 public View onCreateView(LayoutInflater inflater, ViewGroup container,

93 Bundle savedInstanceState) {

94 View rootView = inflater.inflate(R.layout.fragment_first,

95 container, false);

96 return rootView;

97 }

98 }

99

100 private boolean checkCameraHardware(Context context) {

101 if (context.getPackageManager().hasSystemFeature(PackageManager.FEATURE_CAMERA)){

102 // this device has a camera

103 return true;

104 } else {

105 // no camera on this device

106 return false;

107 }

108 }

109

110 }

111

112

113 %

1 package com.iisc.android.typestatebenchcamera_01;

2

3 import android.support.v7.app.ActionBarActivity;

4 import android.support.v7.app.ActionBar;

5 import android.support.v4.app.Fragment;

6 import android.os.Bundle;

7 import android.view.LayoutInflater;

8 import android.view.Menu;

9 import android.view.MenuItem;

10 import android.view.View;

11 import android.view.ViewGroup;

12 import android.os.Build;

13

14 public class CaptureImageActivity extends ActionBarActivity {
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15

16 @Override

17 protected void onCreate(Bundle savedInstanceState) {

18 super.onCreate(savedInstanceState);

19 setContentView(R.layout.activity_capture_image);

20

21 if (savedInstanceState == null) {

22 getSupportFragmentManager().beginTransaction()

23 .add(R.id.container, new PlaceholderFragment()).commit();

24 }

25 }

26

27 @Override

28 protected void onStart() {

29 // TODO Auto-generated method stub

30 super.onStart();

31 FirstActivity.mycam.startPreview();

32 FirstActivity.mycam.startFaceDetection();

33

34

35 }

36

37 @Override

38 public boolean onCreateOptionsMenu(Menu menu) {

39

40 // Inflate the menu; this adds items to the action bar if it is present.

41 getMenuInflater().inflate(R.menu.capture_image, menu);

42 return true;

43 }

44

45 @Override

46 public boolean onOptionsItemSelected(MenuItem item) {

47 // Handle action bar item clicks here. The action bar will

48 // automatically handle clicks on the Home/Up button, so long

49 // as you specify a parent activity in AndroidManifest.xml.

50 int id = item.getItemId();

51 if (id == R.id.action_settings) {

52 return true;

53 }

54 return super.onOptionsItemSelected(item);

55 }

56

57 /**
58 * A placeholder fragment containing a simple view.

59 */

60 public static class PlaceholderFragment extends Fragment {

61

62 public PlaceholderFragment() {

63 }

64

65 @Override

66 public View onCreateView(LayoutInflater inflater, ViewGroup container,

67 Bundle savedInstanceState) {
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68 View rootView = inflater.inflate(R.layout.fragment_capture_image,

69 container, false);

70 return rootView;

71 }

72 }

73

74 }

4.8.2 Results

Table 4.4 presents the static typestate analysis results for our asynchrony-aware approach on

AICCFG against a synchronous-only typestate analysis built as an IFDS over the program

representation used by IccTA applied to AsyncBench test applications. On these applications,

our asynchrony-aware typestate analysis captures all typestate violations and raises a false

warning in only one case in each resource category. We consider these as false warnings,

these are due to inherent non-determinism in the control flow interleaving across different

component lifecycles. It is hard to reason whether they can actually manifest in some run of

the applications. Since these warnings are raised by both asynchrony-aware and asynchrony-

unaware approaches, we soundly treat them as false warnings in both the cases. Following

this logic, we achieve a precision rate of 78% and a recall rate of 100% over the AsyncBench

benchmarks.

Compared to this, the synchronous-only approach misses all the typestate violations in

different categories due to the inherent unsoundness of its underlying program representation

and its synchronous analysis. The high false negatives of the synchronous only analysis show

the unsoundness in the state-of-the-art modeling of the Android environment which makes them

miss many typestate violations. Moreover, a sound asynchronous and lifecycle modeling and

an asynchrony-aware analysis also increase the precision of our analysis, allowing us to give a

50% lower false warning and higher precision compared to the synchronous-only analysis. Our

asynchrony-aware typestate analysis runs smoothly on a normal desktop machine with a dual-

core Intel processor and a moderate memory size of 16 GB. The average time for analyzing an

application in AsyncBench came out to be approximately 2-3 minutes. This shows the practical

feasibility of our analysis on these applications.

4.9 Immediate Future Work

There are several directions for an immediate extensions of the work discussed in this chapter.

The formal semantics presented in this thesis excludes the concurrent features of Android

applications. Extending the analysis approach to handle multi-threaded control and data flows
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Table 4.4: TypeState Analysis on AsyncBench Applications.

~ = correct warning, � = missed violation, ? = false warning
Application Name Async-

Aware
Sync-
only
(IccTA)

Camera Applications
Cameraapp 0 - ?
Cameraapp 1 ~ �
Cameraapp 2 ~ �
Cameraapp 3 ~, ? �,?

MediaPlayer Applications
MediaPlayer 0 - ?
MediaPlayer 1 ~ �
MediaPlayer 2 ~ �
MediaPlayer 3 ~, ? �,?

SQLiteDatabase Applications
SQLiteDatabaseapp 0 - ?
SQLiteDatabaseapp 1 ~ �
SQLiteDatabaseapp 2 ~ �
SQLiteDatabaseapp 3 ~, ? �,?

File Applications
Fileapp 0 - ?
Fileapp 1 ~ �
Fileapp 2 ~ �
Fileapp 3 ~, ? �,?

UriPermission Applications
Permissionapp 0 - ?
Permissionapp 1 ~ �
Permissionapp 2 ~ �

Total, Precision and Recall
~, higher is better 14 0
?, lower is better 4 8
�, lower is better 0 14
Precision = ~ / (~ +
?)

78 % 0 %

Recall = ~ / (~ + �) 100 % 0 %

127



can be a challenging and interesting extension, as none of the state-of-the-art static analysis

works for Android applications handle multi-threading in a sound and practically precise way.

Another interesting extension will be to use to model, the AICCFG, and the asynchrony-aware

static analysis framework discusses in the chapter to solve other interesting static control and

data flow analysis problems, like Information flow analysis, or static slicing, etc.

4.10 Chapter Summary

In this chapter, we motivated for a sound model of Android asynchronous control flow. Fol-

lowing this, we provided such a formal model and its semantics. We presented an intermedi-

ate program representation for Android applications, capturing the defined formal model and

semantics. We motivated the need for an asynchrony-aware static analysis for Android ap-

plications and presented an asynchrony-aware, static typestate analysis over our intermediate

program representation. We empirically showed the effectiveness of our model and analysis and

compared it against other state-of-the-art analyses.
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Chapter 5

Presburger-definable Typestates

The thesis so far discussed the challenges in verifying safety properties over programs with

convoluted control and data flow semantics. We also presented solutions for these challenges

in the case of Android applications. This allowed us to build a typestate analysis over these

applications aiding in statically verifying various important Android resource usage protocols.

The AICCFG presented is not limited to typestate analysis and can be used for other static

analyses as well, thus allowing us to verify many other program properties like information flow,

pointer analysis, etc. In this chapter we discuss the other aspect of program verification which

make the safety property verification a challenging task. We discuss about the expressive

limitations of the typestate properties and how they affect the verification of some crucial

safety properties of programs. Following this we present an extension of classical typestates to

overcome some of these expressive limitations.

5.1 Introduction

Types are one of the major mechanisms used by programmers for modeling and verifying

properties of programs and data. However, types have limitations as a specification mechanism

since the type of an object remains constant during its life time. For instance, types are

good at specifying structural properties of data or programs, like type of a method arguments,

return value, etc, which generally does nor change during the life time of the object. However,

standard types cannot enforce a behavioral property, like calling a method in an allowed order,

or availability of a method based on the state of the base object. A classic example of such a

property is a FileManager which allows a File object to have a set of operations defined over it,

viz. open, close, read and write but only a subset of these operations are valid on a File object

based on its current state.
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Typestate [115, 82, 31, 9, 53] systems, which form a component of general Behavioral

types [61], allow the type or some abstract state of an object to change during its lifetime

in a computation. Thus, unlike standard types they can enforce behavioral safety properties

that depend on the changing state of the object.

Originally, typestate allowed programmers to specify a valid sequence of operations on data,

protocols associated with resource usages, behavioral correctness like defining a variable before

its use, etc. More recently, typestate has seen its application in newer domains, for example,

typestate is useful to specify and model properties and protocols of complex communicating

systems [83].

Although efficient at capturing properties related to the state of data, standard typestates

again have limited expressive power. Standard typestates can only express program properties

from finite-state domain [82, 115] and cannot enforce a property beyond the finite state abstrac-

tion. For instance, consider a commonly occurring non-regular behavioral property associated

with an abstract data type like a Stack, “the number of items pushed in the stack is greater

than or equal to the number of items popped”. Standard typestates cannot enforce such a

context-free property. This limitation of regular typestate impedes the effectiveness of various

typestate analyses, type systems for typestate verification and typestate oriented programming

languages approaches for program analysis and verification.

In the lack of a more expressive typestate, such properties are checked using costly, error

prone and difficult to debug runtime checks [74] or are converted to abstract models and then

verified using existing non-regular verification techniques [15]. These abstract model based

verification do not allow correct-by-construction practical implementation of real systems and

does not provide any guarantee over a concrete implementation of an abstract protocol. (For

example, Heartbleed bug [130] in popular OpenSSL library that provides cryptographic services

such as SSL/TLS to the applications and services).

The main idea of our work is to attack this expressive limitation of regular typestates. We

present an extended notion of typestate, called Presburger-definable typestate (p-typestate).

Presburger-definable typestate allows associating a Presburger formula to the states of a regular

typestate. This formulation immediately allows a programmer to associate some extended

property along with the regular state of an object, this allows expressing richer behavioral

properties. However, allowing richer logic shoots up the complexity of typechecking which

might lead to an undecidable typechecking [56] or might need user interaction [117]. To strike

a balance between expressiveness and decidability and automaton, we use Presburger formulas

which allows us to develop a fully automatic decidable static checking system for p-typestate

system using the decidable validity and satisfiability results of Presburger logic.
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We use the expressive power of dependent types [85] to implement the idea of p-typestate and

provide a typestate oriented, imperative programming language with p-typestate typesystem

called DRIP (Decidable Rich Interface Programming) language. DRIP allows a programmer

to specify and construct programs satisfying rich behavioral properties. We present a formal

semantics for DRIP and p-typestate system, and present a proof of soundness of our system.

p-typestate and DRIP makes an important contribution to the design-by-contract (behav-

ioral contract) [84] methodology for object-oriented programs. This methodology allows pro-

gram contracts and other behavioral properties to be annotated by a programmer with methods

which are then asserted during program execution. There are numerous benefits of using such

a principled approach for program design, like modular design, better implementation, safety

guarantees, etc. However, one of the major hurdles of its acceptance in more main-stream lan-

guages has been a lack of verified contract-by-design systems., that is, design-by-contract with

mathematical verification that all contracts are always honored. Such a mathematical verifica-

tion cannot be done using runtime checks and requires a decidable static checking. p-typestate

and DRIP provide one such verified dbc system using static type-checking. Unlike other dbc

languages (like Eiffel, Ada, etc.), we do not defer the checking of the implementation satisfy-

ing the contract to runtime assertions, and unlike only a few other verified design-by-contract

systems like ESC/Java, we have a decidable static type checking.

Further, automatic inductive type checking p-typestate and other such rich behavioral prop-

erties usually requires a programmer to annotate loop invariants in the program [126, 99, 112],

to placate this burden from the programmer, we also present a novel loop invariant calculation

approach using loop acceleration technique for Presburger definable transition system.

Finally, we evaluate our p-typestate system and the static typechecking by implementing

programs enforcing several non-regular contracts and properties in DRIP which could not be

enforced using regular typestates.

Following are the major contributions of our work-

• We introduce Presburger-definable typestate.

• We present a dependent type system to enforce p-typestate properties and implement

DRIP which is a typestate-oriented language with decidable static p-typestate checking.

• We present a soundness result for our p-typestate type system over DRIP.

• Minor contribution : We present a novel loop-invariant calculation technique based on

acceleration techniques for Presburger definable systems.
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• We further show the effectiveness of the p-typestates by implementing many real world

programs enforcing p-typestate properties in DRIP which cannot be specified using regular

typestates.

5.2 Overview

1 [ Typestates(" initialized", " uninitialized", " empty", " full", " working") ]
2 class Stack {
3 // @requires \_initialized == false;
4 // @ensures \_initialized == true;
5 [ Pre( uninitialized), Post( initialized AND empty) ]
6 public Stack(){ return new Stack(); }
7

8 private int capacity;
9 //@ private invariant 0 <= top <= capacity;

10 private int top; // top index
11 private int count;
12

13

14 // @requires \_initialized == true;
15 // @requires 0 < i <= top;
16 // @requires top <= capacity;
17 // @ensures \_full == false;
18 [ Pre( initialized AND ( working OR full), Post( initialized and ( working OR full) ]
19 public get(int i){ ... }
20

21 // @requires _initialized == true;
22 // @requires top < capacity;
23 // @ensures top’ > 0;
24 // @ensures top’ = top + 1;
25 // @ensures count’ = count + 1;
26 // @ensures \_empty == false;
27 [ Pre( initialized AND ( empty OR working ), Post( initialized AND ( working OR full) ]
28 public put (item x){}
29

30 // @requires \_initialized == true;
31 // @requires \_empty == true;
32 // @requires top <= capacity;
33 // @requires #put == #remove
34 // @ensures \_initialized == false;
35 [ Pre( initialized AND ( empty ), Post( uninitialized) ]
36 public balance(){
37 this.discard = true;
38 discardTheStack();}
39 }
40 }

Figure 5.1: A typestate based implementation of Stack with contracts

Consider Figure 5.1, an example of an array based Stack implementation in an object-

oriented setting. The abstract class Stack provides a constructor, 4 methods put(Similarly

remove, which is not shown), get, balance and a set of private class fields. The figure shows

a set of contracts [131, 74] associated with each method in a specification language similar

to Java Modeling Language (JML). (Figure also shows a set of typestate annotations as Pre
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and Post annotation withing square brackets, which the reader should ignore for now.) This

is a common specification pattern following the design-by-contract [84] principle for building

reliable softwares. These specifications can then be checked at either compile time or runtime,

thus guaranteeing certain properties. For example, the put operation requires that the stack is

not-full(the index of the top element is strictly less than the capacity) while the get operation

requires the index to be in the capacity of the stack and is not defined for an index 0. Such

contracts allow a programmer to specify behavioral properties of abstract data or program apart

from the structural properties (like type of arguments and return value) which are normally

defined by a method signature. Standard typestates can efficiently enforce simple behavioral

program properties by associating a finite set of typestates with each type, and annotating

each expression with a possible transitions over these typestates in a fashion similar to the

JML annotations. Let us see if we can enforce such rich contracts using standard typestates.

Figure also shows a typical typestate annotated implementation for the Stack and related

contracts described earlier (we use the same figure for brevity). The annotation language (shown

in bold as finite set of Typestates and Pre and Post annotations) has been adapted from

the typestate work for objects [82]. We keep the older JML based contracts annotations along

with the new typestate annotations for elucidation purposes. We define five different typestates

viz. { initialized, uninitialized, empty, full, working } to capture the contracts described by

the contracts. For each method definition, we associate a Pre and Post clause, showing the

analogues @requires and @ensures annotations of the contract. As can be seen in the figure,

for each of these methods, a portion of the original contracts (showing programmers original

behavioral intent) could be “efficiently” encoded using typestates while the remaining, either

can be encoded only with a complex set of new typestates or cannot be encoded at all. These

are shown in red ink in the figure. For example, consider method put at lines (21-28), although

standard typestate can encode the simple precondition (@requires initialized == true) and the

postcondition (@ensures full == false) by using suitable typestates for these states, specifying

other contracts shown in red, either requires defining a complex set of typestates (for example

@ensures top’ > 0 can be specified by defining a new typestate for top and relating it to empty)

or cannot be specified using finite states at all. For example, defining the other two contracts

ensuring updated value for top and count requires counting over possibly infinite set of integers

and hence cannot be modeled using finite set of typestates. For some other cases, for example

method balance at lines (30-39), the contract requires a check (@requires #put == #remove)

that the number of items pushed (put) are equal to the number of items popped (remove)

which being a non-regular property cannot be expressed and enforced using standard finite

state typestates.
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A contract specification language like JML, gives a glimpse of useful behavioral contracts or

properties which a programmer wishes to be verified/enforced by the language compiler which

can aid in simple and correct design and implementation of real world systems. Unfortunately,

standard typestate can only enforce a very small fraction (finite state behavioral abstractions)

of these useful behavioral properties, as shown by the above example. Furthermore, many

of such non-regular behavioral properties show up in varied domains of programs like, API

specifications for infinite state systems, cache coherence protocols, session and communication

protocols, etc.

In the lack of such a system, these richer non-regular behavioral properties are either dy-

namically enforced at runtime, which is the approach taken by the JML compiler(jmlc) [132], or

are statically enforced using highly expressive but undecidable logics, which is the path taken

by the Extended-static checker for Java and Modula [56]. Unfortunately, both these approaches

have their shortcomings, the runtime assertions which are more popular are costly and error

prone, difficult to debug and cannot be verified. The static verification approaches using richer

logics unfortunately very soon fall into undecidability trap. For example, ESC/Java although

expressive, but lacks a decidable static checking and hence cannot provide any sound guarantees.

Other even more richer systems like fully dependently typed languages like Caynene [14] has

undecidable typechecking, while other theorem provers like Coq and Agad( [117, 98]) require

user interactions and are not automatic, making it hard to program real world systems.

To mitigate these limitations, in this work we present an extension of the classical typestates

called as Presburger-definable typestates(p-typestate) . These typestates allows a programmer

to specify non-regular behavioral properties like the one discussed in Figure 5.1 while still

maintaining a fully automatic, decidable static checking.

For example, consider Figure 5.2, it shows a p-typestate based implementation of the original

Stack and its related contracts in our typestate-oriented programming languag DRIP. The

exact syntax and meanings of the notations will be elaborated in Section 5.4. Each method

is annotated with a pre and post typestates for its parameters, the base reference field (this)

and the fields in the environment. The program defines a state Stack rather than a class, this

is the typestate-oriented intricacy which the reader should ignore at the moment. We still

include the @requires and @ensures annotation of JML contracts for illustration and they are

not the part of the program. The initial Typestate annotation (line 1) defines the possible set of

regular typestate which will be use to define Presburger definable typestate. In an actual DRIP

program, these regular typestates are defined as separate states similar to the Stack. There

are a few noteworthy points in this implementation which we discuss now. Line 4, defines a

new Presburger typestate called as PStack, which is a dependent function type dependent on
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1 [ Typestates(" initialized", " uninitialized") ]
2 state Stack {
3 // a dependent function type with \#p , \#r a formula over it and a possible regular typestate.
4 type PStack : Pi ( np, nr, np ≥ nr ) -> Stack;
5 Item[] array = new Item[capacity];
6 var Integer〈ncap〉 capacity;
7 var Integer〈ntop〉 top; // top index
8 var Integer〈ncount〉 count;
9

10 // @requires \_initialized == false;
11 // @ensures \_initialized == true;
12 public Stack()[PStack ( True ) -> \_uninitialized >> PStack ( np == 0, nr == 0

) -> \_initialized this]{
13 return unique PStack (0, 0) -> \_initialized st = new Stack();
14 }
15

16 //@requires \_initialized == true;
17 //@requires 0 < i <= top;
18 //@requires top <= capacity;
19 //@ensures _full == false;
20 public get(Integer 〈ni〉 i)[ PStack (_) -> \_initialized >> PStack (_) -> \_initialized this , Integer

〈ntop, 0 < ni ≤ ntop〉 top , Integer〈ncap, ntop ≤ ncap〉 >> Integer〈ntop ≤ ncap〉
capacity ]

21 {
22 //...
23 return array[i];}
24

25 // @requires \_initialized == true;
26 // @requires top < capacity;
27 // @ensures top’ > 0;
28 // @ensures top’ = top + 1;
29 // @ensures count’ = count + 1;
30 // @ensures _empty == false;
31 public put (Item x)[ PStack (np, nr) -> initialized >> PStack

(n′
p = np + 1, nr) -> \_initialized this, Integer〈ntop, 0 ≤ ntop < ncapacity〉 >> Integer〈n′

top = ntop + 1〉 top
,

32 Integer〈ncount〉 >> Integer〈n′
count = ncount + 1〉 ]{

33 top = top + 1;
34 array[top] = x;
35 count = count + 1;
36 this <- PStack (n′

p = np + 1, nr) -> \_initialized;

37 }
38

39 // @requires \_initialized == true;
40 // @requires \_empty == true;
41 // @requires top <= capacity;
42 // @requires #put == #remove
43 // @ensures \_initialized == false;
44 public balance()[PStack (np, nr, nr == np) -> initialized >> PStack

(n′
p = np, n′

r = nr) -> \_uninitialized this, Integer〈ntop ≤ ncapacity〉 top ]{

45 this.discard = true;
46 discardTheStack();
47

48 }

Figure 5.2: A p-typestate based implementation of Stack(PStack) with contracts
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a Presburger formula over two auxiliary variables (np, nr) counting the abstract properties of

the Stack, viz. #p and #r. The dependent function type also depends on a regular typestate

state (Stack) which can be either initialized or uninitialized.

Besides these p-typestate types, the program contains simple Java types and declarations

(line 5) and dependent version of int. These are represented as Integer 〈ncap〉 capacity, repre-

senting an int capacity dependent on its value ncap. Let us see how these simple, dependent and

p-typestate types allow a programmer to specify and verify earlier JML contracts which could

not be specified using regular typestate (earlier shown in red, now shown in green). Consider

the definition of method put, the method signature defines the pre and the post p-typestates

(and types) for all the relevant fields using a syntax A� A’ a, where A and A’ are pre and post

types for the variable a. The signature requires that the base object is a PStack, dependent

on np, nr counting #p and #r and is in an initialized state ( represented as, PStack (np, nr)

→ initialized) and post the method execution, it ensures that the #p is incremented and

the state of the PStack remains initialized. Similar contracts are defined for other variables

in the environment, like top, capacity, count and for method parameters as well (not shown

here). Similarly, the signature for method balance defines a non-regular contract which stan-

dard typestate cannot express. Readers can note, that some of the auxiliary variables (used

to define Presburger formula terms) have their analogues as program fields, like ntop has top

and ncount has count, these variables model some abstract state of the data/program required

to verify the property and contract. These are updated by our static typechecker implicitly

and programmer does not need to track them. Contrary to this, some other auxiliary variables

(e.g. np and nr ) model some extended abstract property of the data/program not captured

by the program fields, like the number of put and remove operations performed on a Stack.

These are only visible to the typecheker to specify and verify an extended abstract property

of the program/data. These need to be explicitly updated by the programmer, for example

line 36 shows such an explicit update of the p-typestate for the this field. The semantics of an

implicit/explicit update will be discussed in detail in Section 5.4.

Alongside statically verifying protocol implementations, DRIP also allows a programmer to

verify a correct usage for such rich contracts and interfaces. For example, consider Figure 5.3,

which is a faulty BoundedStack client program, which is adapted from [86]. The figure presents

two different tests t1, t2 with main methods. Each main has a sequence of DRIP statements

and expressions including a loop. Each of the tests, uses the p-typestate implementation of

Stack from Figure 5.2 and the typechecker can statically verify the bug in t2 while verifying

the correctness of t1. The while loop contains an invariant (shown in [...]), which is checked by

the DRIP typesystem and then used for inductively verifying other expressions. Later we also
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discuss, how such loop-invariants can be automatically calculated thus alleviating the burden

from a programmer.

Thus, p-typestate and DRIP provides a verified design-by-contract system and a program-

ming language which allows a programmer to implement correct by construction programs

guaranteeing rich behavioral properties which cannot be enforced using standard typestates.

Further, the static p-typestate checking does not fall into the undecidable trap like other verified

design-by-contract systems like ESC/Java, thus providing safe guarantees for an interface im-

plementation and usage. s In next few sections, we present a formal definition of the p-typestate

and DRIP and details of the typechecking.

1 // @Test t1
2 import Stack;
3 public main(){
4 Stack st = new Stack();
5 st.capacity = 5;
6 st.put(2); st.put(3);
7 st.get(1); st.remove(); st.remove();
8 st.put(8); st.remove();
9 Integer 〈ni〉 i = 1;

10 while [st.count <= st.capacity](i <
capacity ){

11 st.put(i);
12 }
13

14 st.put(2); // typechecks
15 st.remove(); st.remove();
16 st.remove(); st.remove();
17 st.remove(); st.balance(); // typechecks
18 st = new Stack();
19

20 }

1 // @Test t2
2 import Stack;
3 public main(){
4 Stack st = new Stack();
5 st.capacity = 5;
6 st.put(2); st.put(3);
7 st.get(1); st.remove();
8 st.remove(); st.put(8);
9 st.put(4) st.remove();

10 Integer <@〈ni〉@> i = 1;
11 while [st.count <= st.capacity](i <

capacity ){ // p-typestate error
12 st.put(i);
13 }
14

15 st.balance(); // p-tyepsate error
16 st = new Stack();
17

18 }

Figure 5.3: Two test applications using DRIP PStack

5.3 Presburger-definable Typestate

In this section we discuss the main idea of Presburger-definable typestate, present a formal

definition of the concept and discuss how it can be modeled in practical systems.

5.3.1 Formal Definitions

Definition 5.1 (Typestate [115]) Given a strongly typed language L and an extensible set

of types T , the typestate (or regular typestate) associated with a type τ ∈ T (or a variable of

type τ), is a finite set of static labels S(τ).

For example, the regular typestate S(File) for the simple File type for a FileManager property is

a set {Open,Close, ⊥}. Intuitively the typestate set defines the finite set of possible states for
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a variable of type τ .

Definition 5.2 (Presburger-definable Typestate) A Presburger-definable typestate (p-

typestate) associated with a type τ ∈ T (or a variable of type τ) is a possibly infinite set Sp(τ)

⊆ (Ψ× S(τ)), where Ψ is the set of Presburger formulas defined over a set of auxiliary integer

variables called type-variables, and set S(τ) is the regular typestate set for τ .

For example, the p-typestate set for type File can be defined as follows. Let S(File) =

{open, close,⊥} be the regular typestate set for File, and let φ1 = {∀i, j|i >= j} and φ2 =

{∀x, y|x = y+1}. Then pairs like (φ1, open) and (φ2, close)) ∈ Sp(τ). Intuitively, a p-typestate

allows to associate a presburger definable property along with a state, thereby providing greater

expressiveness than a typestate.

The set of integer variables like i, j, x, y, ... can be either programmable, which can be ex-

plicitly updated by a programmer or non-programmable, which are operated upon only by the

typechecker. The latter are useful for modeling some abstract state of programs/data which is

a function of a set of program fields. For example, a File might have an integer field wordcount,

which counts the number of words written to the File. In such a case a File type can capture

the wordcount with an auxiliary variable, say nwc. This relation between wordcount and its

associated nwc is maintained by the typechecker. These variables are like Model fields of JML.

Unlike these, programmable auxiliary integer variables are introduced by a programmer to

model some extended state of programs/data. For example, in the Stack example of Figure 5.2,

auxiliary variables np, nr have no associated program variables and are used to model an ex-

tended property capturing number of items pushed and removed respectively. These variables

can be explicitly updated by the programmer in our DRIP. These variables are like Ghost fields

of JML. These programmable and non-programmable integer variables form type variables in

our language. The details of these variables and allowed operations on them will be described

in section 5.4.

5.3.1.1 p-typestate Transitions

To define transitions over p-typestates, we need to define the set of program operations. We

define these operations here in a simple way. For a strongly typed language L, we formally

define a program P in L. A program P is a sequence of expressions where each expression is

defined as a pair < op, V >, op being an operation from the set of valid operations O and

V =< v1, v2, ..., vN > is an indexed set of operands to op. Each operation op ∈ O has a

signature T (op) = 〈t1 : τ1, t2 : τ2, ..., tn : τn, tr : τr〉, specifying the type of its operands with the

last term representing the result. Each τi, represents the type of the ith operand term ti. Each
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vi is an actual argument for the formal operand with the restriction on type of vi, Typeof(vi)

= τi. We define p-typestate transitions (δ : SΨ(τ) 7→ 2SΨ(τ)) for each operation op ∈ O as

(Preop,i � {Postop,i,k}), such that-

• Preop,i, is the p-typestate precondition for the ith operand vi, Preop,i ∈ SΨ(Typeof(vi)),

defines the required p-typestate for vi for op to be applicable.

• For each different outcome k, k = 1, 2, ..., m, Postop,i,k ∈ SΨ(Typeof(vi)) represents the

typestate for vi, when op terminates with outcome k.

5.3.1.2 Capturing p-typestate with Dependent Types

Almost all the static standard typestate analysis and verification works( [53, 9, 115]) model

typestates as a set of static labels, captured using some finite set of standard types, and define

semantics for these types and their transitions. For example, the typestates associated with

the FileManager example can be modeled as a set of static types Open, Close and Error, and

the transitions of the system can be modeled as simple rules over method definitions for open,

close, read, etc..

Unfortunately, this approach is not directly extensible to capture definitions and transitions

of a Presburger-definable typestate. The problem arises due to the possible set of p-typestates

forming an infinite set. This makes statically defining a predefined set of simple static types

impossible. Furthermore, a p-typestate transition can possibly require counting and comparing

integer values in form of Presburger formulas for which simple types do not suffice. Thus, the

approach fails to specify p-typestate transitions when trying to model them as regular typestate

transitions. Specifying p-tyepstates and their transitions and checking a program against these

specifications requires a richer theory which can model possibly infinite p-typestate states and

operations over an integer counter system.

Dependent Types [88, 22] are types which can depend on some other terms in a program.

Unfortunately, this expressiveness of general dependent type theories like Martin Löf’s type

theory (theory behind Coq and Agda) comes at the cost of complex type-checking (undecidable

typechecking in general). We choose a fragment of these theories which is expressive enough to

define above stated features of p-typestate, and yet has a fully automatic, decidable typecheck-

ing. This fragment restricts the index terms of a dependent type to a product of Presburger

arithmetic logical formulas and finite set of regular typestate states.

Using this fragment, a programmer can create a possibly infinite family of types ( modeling

the set of p-typestate states) as a dependent function of a pair (x,s) ∈ (Ψ × S). An element

of this set can be constructed by a standard dependent function application. For example, let
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Π(x : φ, s : S, px,s) be a dependent function type, indexed by a pair (x, s) of Presburger formula

and a state. let z = ∀i1, i2.(i1 = 3 ∧ i2 ≥ i1) be a valid Presburger formula and let s1 be a

valid regular typestate state, then the dependent function type application gives a concrete

p-typestate state, represented by px,s{z/x, s1/s}. Such a state can be pictorially represent as

follows:

s

(∀i1, i2.(i1 = 3 ∧ i2 ≥ i1))

A p-typestate transition over these p-typestate states is defined by pre- and post- method

annotations over these states (types constructed via dependent function applications) while a

dependent typechecking algorithm enforces a given p-typestate property over programs.

5.4 Decidable Rich Interface Programming (DRIP) Lan-

guage and p-typestate Type System

In this section, we present a formal definition of our dependent type system implementing p-

typestate. We also present a small, typestate-oriented, imperative language with monomorphic

dependent types incorporating the p-typestate and static typechecking and call it Decidable

Rich Interface Programming Language (DRIP).

5.4.1 Syntax

Abstract Syntax Table 5.1, presents an abstract syntax for DRIP. The syntax is inspired

by a standard object-oriented language or a core object calculus like Feather Weight Java [65].

Besides the aspect of typestates and Presburger-definable typestates, the language is similar to

a standard object-oriented language. The language has states as first-class elements (following

typestate-oriented programming [9]) rather than the usual classes. This allows a programmer to

define typestate properties explicitly in the program rather than as a meta property associated

with a class.

For illustration the syntactic constructs specifically relevant to the p-typestate definitions

are shown in gray background.

Before explaining the syntactic features of the language in detail, we elaborate the names

used in the syntax. S, S1, S2... and s1, s2, s3, ... represent regular state names. f, g, h.. range over

field names while M,N, ... and m,n, ... range over method names. x, y, ... range over variables,

and ρ1, ρ2, ... range over names of general variables ranging both over values and references and

type variables. X, represent a possibly empty list of an element X. A semicolon (;) represents
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(program) (P) ::= st1 st2 st3 ... stn main

(state) (st) ::= state S1 case of S2 { d }
(declaration) (d) ::= field | method | pts-def

(field-decl) (field) ::= τ f

(method-decl) (method) ::= M : χ { b }
(signature) (χ) ::= ∀[O] (ρ1 : τ1, ρ2 : τ2, ..., ρn : τn)

→ ∃ρr : τr; (ρ1 : τ ′1, ρ2 : τ ′2, ..., ρn : τ ′n)

(type-decl) (pts-def) ::= type τ

(code-block) (b) ::= stmt

(statement) (stmt) ::= let x = e in stmt

(state-change) | e ← e in stmt

| while [∃.φ] (e1 : bool, e2) in stmt

| if (e : bool) then e1 else e2 in stmt

| skip

(expression) (e) ::= x | new S | e.f
| e.m(e1, e2, ..., ep)

(comp) | e ; e | c

(dep-fun-app) | px,s (e2)

(pair) | (e1 : τ1, e2 : τ2 )

(projection) | pr1 pair | pr2 pair

(value) | v
(const) (c) ::= boolliteral | intliteral | stringliteral
(value) v ::= ρ | c | new S | (e1, e2)
(name env) (O) ::= • | ρ, O

(variable name) x , this
(field name) f
(method name) m , main, M
(type family name) γ
(state name) S
(abstract locations) li
(arithmetic variable name) v

Table 5.1: Abstract Syntax declarations, statements, expressions, and values
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end marker and is omitted from statements and expressions (other than wherever required for

explanation) for clarity.

A syntactically valid program (P) (refer Table 5.1) is a concatenation of zero or more state

definitions (st1, st2, ..., stn) followed by an optional method declaration for a main method.

A state models a state of a regular typestate. A state definition (st) is similar to a class

declaration in a standard object calculus. It defines a state S1, which may be a substate (like

subclass) of another state S2 and has a list of declarations d. The finite set of state definitions {
st1, st2, ..., stn } in a program defines the possible set of regular typestates for a given p-typestate

property.

A declaration (d) can be either a field declaration (field), a method declaration (method),

or a dependent function type declaration (pts-def). DRIP allows a programmer to define a

new dependent function type using the pts-def syntax. It declares a new dependent-function

type which is dependent on a Presburger definable formula, φ and a regular typestate state S.

Intuitively this can be seen as a function which takes a pair (x, s) of these types and returns a

type px,s, where x and s can occur free. The resultant type defines a p-typestate state satisfying

a presburger formulas x with a regular typestate set s.

A method declaration has a method name M , a method signature χ and a method body b.

A method signature is named χ and represents a set of pre- and post- p-typestate conditions

for the method. It shows all possible transition of typestates (p-typestate as well as regular

typestate) associated with each parameter and environment variable for the method before and

after the method execution. A method signature χ looks as follows:

∀[O](ρ0 : τ0, ρ2 : τ2, ..., ρn : τn)→ ∃ρr : τr; (ρ0 : τ ′0, ρ2 : τ ′2, ..., ρn : τ ′n)

Where, O is the list of variable names ρ which can be either a value variable which can be

assigned a value or a reference variable referring to an object or a programmable type variable.

ρi is ith argument to the method, with ρ0 being the base object of the method. The primed

version of each of these variables represents their value at the method exit. A method signature

expresses possible p-typestate transitions resulting from the execution of a method.

In the concrete language syntax, a method declaration is represented as follows-

τr mi(τai � τai′ai)[τj � τj′aj]{field; stmt; e}

Where each p-typestate pre and post annotation (as shown in abstract syntax of χ ) for a

variable aj is represented as τj � τj′aj. The bounded arguments (shown in “( )”) and the free

variables (shown in “[ ]”) are separated out. For instance, consider method definition for put,
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defined in PStack state in Figure 5.2 (line 38). The method signature is defined as follows-

[PStack(np, nr)→ initialized� PStack(n′p = np + 1, nr)→ initialized this,

Integer〈ntop, 0 ≤ ntop < ncapacity〉 � Integer〈n′top = ntop + 1〉 top,

Integer〈ncount〉 � Integer〈n′count = ncount + 1〉 count] (5.1)

The signature has no pre- or post conditions for the parameter of the method (as the p-

typestate contract “()” is empty), while the method puts a few pre and post contracts on

the base object (this) as well as other variables in the environment. A p-typesate contract is

defined as a “ pre � post ” string. For example, the contract for this field requires the base

object to be a of type PStack(np, nr) → initialized, which expresses that it is a function of

two type variables and must be initialized, for a valid method call, while the post contract

PStack(n′p = np + 1, nr) → initialized shows how the type variables and the state changes

upon the successful execution of the put method. The contracts defined for other environment

variables, viz. count, top can be understood in a similar fashion.

A method body (b) is a list of statement declarations. The language statements include a

few unique statements along with a set of standard object-oriented language statements. The

addition includes, an explicit state-change statement, a while statement with annotated loop-

invariant, a skip statement, etc. The state-change allows a programmer to explicitly update

the state of an expression or a field (having a valuation for programmable type variables and

regular typestate) with a new state (with a new valuation for programmable type variables

and regular typestate). This is similar to an assume statement [87] common in systems for

Hoare style program verification. The explicit state-change assumes that the programmer

guarantees a new state assigned to the left-hand expression and the typechecker can safely use

this assumption while checking later statements and expressions.

The language has a standard conditional statement (the implementation also includes the

standard switch-case statements). The while statement is similar to a standard imperative while

with a small addition. The statement allows a programmer to augment a Presburger formula

∃.φ as an invariant for the loop. Such a loop invariant is a requirement for the termination

guarantees of our typechecker. Unfortunately, this burden on the programmer is a major

bottleneck for almost all static checkers over rich type theories. In Section 5.6.3, we discuss

how we placate this burden in DRIP, the details are outside the scope of the current work.

An expression e is either a variable x,(both scalar and reference), a new expression, which

instantiates a state, a field access, a virtual method call similar to a standard object based
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language (the language assumes all methods calls are virtual, the constructor is called on a

new object), a comp, composing two expressions, a constant c or a value v. Besides these

standard expressions, the language also has a dependent function application expression, app

and a simple pair construction expression pair. The former allows a programmer to construct

a new p-typestate state while the latter allows creating a pair to be passed as an argument to

a dependent function type.

5.4.2 Types

(simple type) (τ) ::= void | int | bool | string
(state) | S

(Presburger Formula) | φ
(dependent function) | Π(z : φ, s : S).τ | Π(n : N).τ

(dependent integer) | (p{x,s}) | Integer 〈n〉
(pair type) | pair(x : τ1, y : τ2)

(p-typestate) | (px,s(x1/x, s1/s))

(permission type) (product) | (a, τ)
(permission) (a) ::= unique | immutable

(type context) (Γ) ::= • | δ, Γ
(type map) (δ) ::= x : τ | e : τ | M : τ | P : τ | f : τ | τ : Type

(Presburger Formula) φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ∼ φ | ∃v.φ
(Boolean Expression (b) ::= true | false | i#j st # ∈ {≤,≥, 6=,==}

(Arithmetic Expression) (i) ::= constant | v | constant * a | i1 + i2 | - i
(Index Context) (Φ) ::= • | φ, Φ

Table 5.2: DRIP Types and Context

DRIP has a succinct yet expressive set of types. The major addition to other typestate-

oriented programming languages and type systems is the addition of dependent function type(s)

to define a family of p-typestates, a type defining Presburger formulas and a pair type. A simple

type τ can be a primitive type like int, bool, string, void, which defines type for each of the

constants intliteral, boolliteral, stringliteral and a type for skip expression respectively. A state

S is a valid user-defined type. A well-formed Presburger formula φ is a valid type. A dependent

function Π(z : φ, s : S.pz,s) is a valid type. Unlike general dependent types, a dependent function

type in DRIP has a restricted domain, it can depend on a pair of, a Presburger formula z, and

a regular typestate state s. Another flavor of a dependent function type is Π(n : N.Integer〈n〉)
which is a flavored version (a specific case) of the general dependent function type, defining an

Integer, whose value is dependent on the value of a type variable n. The type variable in this

case can again be either programmable or non-programmable. However, in most practical cases,
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the type variable of this special type is non-programmable, and it has a direct correlation with

an integer program variable, hence its value can be updated only by the typechecker. A pair

type is a standard pair of two typed expressions. A type context is either empty or has type

maps from variables, expressions, declarations, etc. to types. We assume a binding τ : Type

for each valid type τ in the language. A Presburger formula has a standard definition of First

Order logical constraints with arithmetic addition and constant multiplication over auxiliary

integer variables. Finally, the typing rules also maintain an Index Context Φ, keeping track

of Presburger definable constraints generated via various typing rules. The Index Context is

either empty or a list of Presburger formulas.

5.4.3 Static Semantics of DRIP

The abstract static state of the program is defined as a tuple (Φ, Γ) representing the Presburger

formula defined index-environment Φ and a type context Γ. The index-environment captures

the conjunction of Presburger formulas defined over programmable and non-programmable

type variables. The static semantics defines the type and p-typestate safety rules for the

language. Figures 5.4, 5.5 and 5.7 present static typing rules for dependent-types, statements

and expressions. A type judgment is either of the following forms:

(Φ,Γ) ` e : τ a (Φ′,Γ′) | (Φ,Γ) ` stmt a (Φ′,Γ′)

The former judgment form says, that under an incoming index-environment Φ and an

incoming type-context Γ, an expression e is evaluated to a type τ while updating the index-

environment and type-context to Φ′ and Γ′ respectively. The latter form says, that a stmt is

well-typed in the static state, and typechecking the stmt updates the index-environment and

type-context to Φ′ and Γ′ respectively. We leave out the later (a (Φ′,Γ′)) from a judgment if

(Φ′ = Φ) and (Γ′ = Γ; e : τ) to reduce cluttering.

It is easy to see how these index-environment and type-context might get updated during

the typechecking process. For example, a new dependent function type (Π(x : φ, s : S, px,s))

declaration using Rule (T-Pi-I) updates the incoming Index environment Φ to a new environ-

ment Φ∧x which is further extended with Ω(s), which is a method which returns a Presburger

formula representing the state s. A well-formed or a valid type has a higher type Type.

5.4.3.1 Type System and Typing Rules

The p-typestate type system and corresponding typing rules enforce a p-typestate property.

Many typing rules for DRIP are similar to a strongly-typed object-based language, thus for

clarity, we only discuss rules which are unique to p-typestate system.
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(Φ,Γ) ` e : τ a (Φ′,Γ′) | (Φ,Γ) ` stmt a (Φ′,Γ′) | (Φ,Γ) ` e : τ

T-Pi-F
Φ,Γ ` φ : Type Φ,Γ ` S : Type

Γ,Φ ` Π(x : φ, s : S).τ : Type
T-pair-F

Φ,Γ ` τ1 : Type Φ,Γ ` τ2 : Type

Φ,Γ ` pair(x : τ1, y : τ2) : Type

T-Pi-I
Φ,Γ ` x : φ Φ,Γ ` s : S

Φ,Γ ` (type Pi(x : φ, s : S).px,s) : Π(x : φ, s : S).τ) a Φ ∧ x ∧ Ω(s),Γ

T-pair-I
Φ,Γ ` x : τ1 Φ,Γ ` y : τ2

Φ,Γ ` (x, y) : pair(x : τ1, y : τ2)

T-pair-pr1
Φ,Γ ` (x, y) : pair(x : τ1, y : τ2)

Φ,Γ ` pr1(x, y) : τ1

T-pair-pr2
Φ,Γ ` (x, y) : pair(x : τ1, y : τ2)

Φ,Γ ` pr2(x, y) : τ2

Figure 5.4: Dependent Function and Pair Type Formation and Introduction Rules

T-pair
Φ,Γ ` x : τ1 Φ,Γ ` y : τ2

Φ,Γ ` (x, y) : pair(x : τ1, y : τ2)

T-dep-app

Φ,Γ `
px,s︷ ︸︸ ︷

type Pi(x : φ, s : S).px,s : Π(x : φ, s : S).τ
Φ,Γ ` e2 : pair(x1 : φ, x2 : S)

Φ,Γ ` px,s (e2) : px,s{pr1(e2)/x, pr2(e2)/s} a Φ ∧ pr1(e2) ∧ Ω(pr2(e2)),Γ

Figure 5.5: Expression Typing Rules

Figure 5.4 presents typing rules for formation and introduction of dependent function type

and pair type. Dependent function type formation rule (T-Pi-F) defines the formation of a

valid user defined dependent function type in DRIP. The rule restricts the allowed class of

dependent function type in the language. Thus, a programmer can define a dependent function

type, dependent on a term x of a Presburger formula type φ, and a valid state s of the State

type but not a general dependent function type, dependent on a term of any general type τ

in the program. Rule (T-Pi-I), is the dependent function type introduction rule. It presents

the typing rule for a dependent function type constructor defined by a type declaration term

(pts-def). The rule introduces a new dependent function type type (x : φ, s : S, px,s), which

we write in brief as px,s. It checks that the type is dependent on a term x of type Presburger

formula, φ, and a term s of user-defined regular typestate state S. The rule introduces two
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T-px,s-eq
Φ,Γ ` x1 = x2 Φ,Γ ` s1 = s2

Φ,Γ ` px,s{x1/x, s1/s} = px,s{x2/x, s2/s}

Figure 5.6: Dependent Function Application Equality

new Presburger formulas (using the indexed formula x and the index state s) into the index-

environment thus updating the incoming Φ to a new environment Φ ∧ x ∧ Ω(s). Practically,

each dependent function type px,s which is introduced through this rule, represents a family of

p-typestate states, indexed by a Presburger formula and a regular typestate state. For example,

consider Figure 5.2, line 4 represents a p-typestate introduction PStack(Pi( np, nr, np ≥ nr ) →
Stack). This is a scary looking syntax for p(∃.np,nr,np≥nr,∃s.s<:Stack). This is a dependent function

type, which when applied to a pair 〈 (∃np, nr.np = 2, nr = 1), (∃s.s = initialized)〉 returns a

type representing a p-typestate state of the Stack. The formation rule for a pair type, (T-pair-

F) rule defines a valid pair type. Unlike, a dependent function type, a pair type is not restricted

to a particular set of types and a programmer can define a pair type for any two types τ1, τ2.

The introduction Rule T-pair-I, defines a typing rule for a pair type constructor (x, y). A pair

type has two predefined projection functions pr1 and pr2. These functions take a pair type (x,

y) and return its first and second component respectively. Rules (T-pair-pr1) and (T-pair-pr2)

define typing rules for these projection functions.

Expressions and statements typing Figures 5.5 and 5.7, present typing rules for expres-

sions and statements.

Rule (T-pair) is an introduction rule which defines typing rule for a pair constructor

(x, y). Rule (T-dep-app) is interesting, it defines the rule for a dependent function appli-

cation for the application expression px,s (e2). It ensures that expression e2 is a pair of a

Presburger formula and a State. It finally reduces the expression px,s (e2) and assigns it a

type px,s{pr1(e2)/x, pr2(e2)/s}. It is a type where free occurrences of x in the result type px,s

are replaced with first projection of the pair and free occurrences of s are replaced with the

second projection of the pair. The rule also introduces two new Presburger formulas into the

incoming index-environment Φ. The first formula is the first projection of the (pr1(e2), pr2(e2))

passed as an argument to the function. The second formulas represented as Ω(pr2(e2), which

is a Presburger formula representation of the regular typestate state x2. Although, the syntax

of DRIP allows a programmer to explicitly attach a state (such as si) in a p-typestate which

allows her an abstraction to define more realistic properties, the typechecker implicitly converts

this syntax to a separate Presburger formula (such as xi == si, where xi is a fresh type vari-

able). This allows a cleaner environment and easier constraint solving. Ω(pr2(e2), represent
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T-invoke

Φ,Γ ` e : Sb | e : p{x,Sb} a Φ1,Γ1

Γ(Sb :: m) = m : Ψ{b}
Ψ = ∀[O](ρ1 : τ1, ..., ρn : τn, ρn+1 : τn+1, ..., ρp : τp)
→ ∃ρr : τr (ρ′1 : τ ′1, ..., ρ

′
n : τ ′n, ρ

′
n+1 : τ ′n+1, ..., ρ

′
p : τ ′p)

Φ1,Γ1 ` e1 : τ1 a Φ2,Γ2

Φ2,Γ2 ` e2 : τ2 a Φ3,Γ3

...
Φn,Γn ` en : τn a Φn+1,Γn+1

Γn+1(ρn+1) : τn+1

...
Γn+1(ρp) : τp a Φ′′,Γ′′

∀ i ∈ [1...n].Γ′′[(ei) 7→ τ ′i ]
∀ j ∈ [n+ 1...p].Γ′′[ρj 7→ τ ′j ]

Φ,Γ ` e.m(e1, e2, ...en) : τr a Φ′′,Γ′′

T-let-1

Φ,Γ ` e : τ1 a Φ′,Γ′ (Γ(x) 6= Integer〈nx〉)
Φ′,Γ′; x : τ1 ` stmt{x/e} : τ a Φ′′,Γ′′

Φ,Γ ` let x = e in stmt : τ a Φ′′,Γ′′

T-let-2

(Γ(x) = Integer〈nx〉 nx ∈ NP (Φ)
vapp = Apply(v)

Φ,Γ ` stmt{x/vapp} : τ a Φ′,Γ′

Φ,Γ ` let x = v in stmt : τ a Φ′ ∧ {nx == vapp},Γ′

T-update
Γ(e2) = pφ2,s2 Γ(e1) = pφ1,s1 ∃xi, (xi == s1) ∈ Φ

Φ,Γ ` e1 ← e2 a Φ ∧ φ2 ∧ (xi == s2),Γ; e1 : pφ2,s2

T-while

Φ,Γ ` ϕ : φ Φ,Γ ` e1 : bool a Φ′,Γ′

(Φ′; e1 == true;ϕ),Γ′ ` e2 : τ2 a Φ′′,Γ′′

Φ′′ � ϕ
(Φ′; e1 == false) � ϕ (Φ′; e1 == false),Γ ` stmt : τ a Φ′′′,Γ′′′

Φ,Γ ` while [∃ϕ](e1 : bool, e1)in stmt : τ a Φ′′′,Γ′′′

T-if

Φ,Γ ` e : bool a Φ′,Γ′

(Φ′; e == true),Γ′e1 : τ1 a Φ′′,Γ′′

‘(Φ′; e == false),Γ′e2 : τ2 a Φ′′′,Γ′′′

Φ,Γ ` if (e : bool) then e1 else e2 : τ1 t τ2 a Φ′′ t Φ′′′,Γ′′ t Γ′′′

Figure 5.7: Expression Typing Rules cont...
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this generated Presburger formula for the regular typestate state.

Rule (T-let- 1 and 2) presents rules for let expression for two different cases. If the lhs

variable x does not has a dependent Integer type, the rule simply updates the value of the

static state in a standard way. If the variable has a dependent Integer type, the operation

on the rhs value v must be applied to the correlated non-programmable type variable nx. An

auxiliary function Apply gives an updated value vapp for the rhs value v upon the application

of this operation. The index environment is updated with a new formula updating nx. The

check, nx ∈ NP (Φ) confirms that nx is a non-programmable auxiliary variable in the index-

environment.

Rule (T-invoke) is the typing rule for virtual method invocation expression, e.m(e1...en)

of a well formed method. The (T-mdecl) rule defined later, checks for the well formedness

of a method (i.e. checks the validity of a signature against its implementation). (T-invoke)

typechecks the base expression e in the current context and ensures that its type is either a

regular state Sb or a p-typestate px,Sb . It fetches the declaration of the callee m declared in

Sb and extract the signature for the callee. It typechecks that each actual method parameter

e1...en satisfies the pre- p-typestate annotation for ρ1...ρn defined in the signature χ. Each of

these typechecks, might update the current type-context and the index-environment, thus the

rule ensures that each ei is checked in the environment updated by the check for ei−1. Besides

formal parameters (ρ1, ρ2, ...ρn), the signature also contains typestate annotations for each of

the free environment variable [ρn+1...ρp]. The rule typechecks each of these free environment

variables against their annotated pre- p-typestates, while updating the context during each

check. It updates for each actual parameter and the free environment variables, its p-typestate,

based on the post annotation in the method signature assuming the correctness of method

implementation. Finally, it updates the index-environment and the type-context according to

the post- p-typestate annotations for the method.

Rule (T-update) presents the typing rule for explicit state change expression e1 ← e2 in stmt,

which is used for explicitly updating the values for programmable type variables. The rule type-

checks the RHS expression and updates the p-typestate of LHS expression by the p-typestate of

RHS (if RHS is an expression and not a p-typestate state) also updating Φ and Γ accordingly.

Rule (T-while), checks for the invariant satisfaction annotated with a while expression in

an incoming environment, It assumes the invariant after each iteration and at loop exit.

Rule (T-if) is a standard conditional expression rule with an assumption of a join operation

over types τ , Φ and Γ. A join over types is defined using subtyping rules (for types related

by subtyping relation) or a type > (for unrelated types). A join relation over Φ is simply a

conjunction of formulas in the two environments while it is defined as a union of the co-domain
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for a given element in the domain, for the map Γ.

Field, Method and State Well Formedness The method declaration rule (T-m Decl)

ensures, that each pre- type annotation for method parameters and the free environment vari-

ables are well formed. Further, it assumes that each of these variables ρi, satisfy their pre-

conditions. It then typechecks the body of the method under this assumption, checking that

post the execution of the method body, the types of these variables satisfy the post- conditions

and the typestate of the body expression satisfy the return type of the method. T-s Decl

checks the well-formedness of all the types, fields, methods declared in the state. Rule (T-

Decl-1) is the well-formedness rule for a field declaration. Rule (T-f Decl-perm) defines the

field declaration rule along with an initial permission. This rule and other alias managing rules

will be discussed in Section 5.4.5

T-m Decl

Φ,Γ ` ∀i, τi : Type a Φ,Γ
(Φ∧i=ni=1φi Γ, ∀i, ρi : τi) ` b : τr a Φ′,Γ′

(Φ′,Γ′) ` ∀i, ρi : τ ′i a Φ′′,Γ′′

(Φ,Γ) `M : ∀[O](∀i, ρi : τi)→ ∃ρr : τr (∀i, ρi : τ ′i){b} a Φ′′,Γ′′

T-f Decl-1
Φ,Γ ` τ : Type τ = Integer〈nf 〉

Φ,Γ ` τ f a Φ ∧ (nf == 0),Γ; (f : τ)

T-f Decl-perm

Φ,Γ ` τ : Type τ = px,s

S <: s
Φ,Γ ` τ f = new S a Φ,Γ; (f : (unique, τ))

Φ,Γ ` S
∀f ∈ f.(Φ,Γ) ` f
∀m ∈ m.(Φ,Γ) ` m
∀γ ∈ γ.(Φ,Γ) ` γ

(Φ,Γ) ` state S : S’ { f ;m; γ} : τ
T-s Decl

5.4.4 Elaboration of Typechecking

The language syntax, the type system and the typing rules define the properties of a “correct”

program. In this section, we outline in brief, our typechecking process. The typechecking

algorithm/process or the “typechecker” uses the language syntax and types (in form of p-

typestate annotations from the programmer), and typing rules to check if a given program

with a main method correctly satisfies a given p-typestate property. This p-typestate property

is not provided as an argument to the typechecker, which is common in typestate analysis

approach (see Chapter 4), rather our core typestate oriented programming language allows the

programmer to explicitly encode the property in the program using the language’s dependent

type system. The typechecker takes such an annotated program P and checks if the annotated
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typestate property is observed by state and method declarations and the main method. In other

words, the typechecker is the process provides a solution to the p-typestate verification problem.

Algorithm 2 present a very hhigh-level view of this typechecking algorithm. The algorithm has

three major phases, the constraint generation, the invariant calculation and constraint solving.

The constraints are generated by assuming all the precedence conditions of an applicable typing

rule, and then generating implication of the consequence from the assumption. The details of

the loop invariant calculation is described in Section 5.5. Here we elaborate the typechecking

algorithm through an example showing how constraints are generated. For clarity and ease of

understanding we take our running example program from the Overview section.

Algorithm 2: High level view of the typechecking algorithm

input : p-typestate annotated input program P

output: A proposition (P typechecks)

1 generate constraints using type system rules

2 generate loop-invariants using loop invariant calculation technique.

3 result ← solve constraint using a solver like Z3.

4 if result == valid then

5 P typechecks

6 else

7 P fails to typecheck

8 generate violating assignment

9 end

5.4.4.1 Generating constraints

In practice, the typing rules inductively generate and transform a set of constraints as Pres-

burger formulas, capturing some p-typestate property. These constraints are then passed to a

simple off-the-shelf SMT solver like Z3 [43], which checks for the validity of the constraints to

verify that the program satisfies the p-typestate property, or returns a typestate violation error.

688 To explain constraint generation process we present the PStack implementation in DRIP

from the Overview section again, and show in Figure 5.8 how the constraint environment Φ ev

olves for different expressions and statements in a section of the example program presented

in the Overview section. Line 3 and 4 uses the general dependent function introduction rule

(T-Pi-I) and updates an empty incoming index-environment with a Presburger formula

∃.np ∈ N,∃nr ∈ N,∃s ∈ Stack initialized, uninitialized.(np ≥ nr ∧ s = Stack)
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We have dropped the existential quantifiers from the formula in the figure for brevity. Reader

should note here that, the state information is also represented as a presburger formula using

a state variable s. Statements in lines 5-8 are field-declarations and use typing rule for it

to add new er auxiliary variables and Presburger formulas defined over them to the index

environment. Lines 9-14 similarly uses, typing rule for a method-declaration. The rules for a

method declaration are gene rated and checked separately in a modular way. The body of a

method is checked in an index environment generated assuming the annotated pre- typestate

for the method. For example, line 11, shows the such an i ndex environment. Lines 12 and

13 show a p-typestate construction and how the typing rule for typestate construction (T-dep-

app) updates the the index-environment. The index-environment post the last statemen t of

a method body is checked against the post-typestate to verify the correctness of a method

implementation. The constraints are generated in a similar manner for the method declaration

for method put in lines 15-24. The constraints for method main, are generated with some

incoming global environment (if any).

1 state Stack {
2 // a dependent function type with \#p , \#r a formula over it and a possible regular typestate.
3 type PStack : Pi ( np, nr, np ≥ nr ) -> Stack;
4 {np ∈ N, nr ∈ N, s ∈ Stack initialized, uninitialized.(np ≥ nr ∧ s = Stack)}
5 Item[] array = new Item[capacity];
6 var Integer 〈ncap〉 capacity;
7 var Integer 〈ntop〉 top; // top index
8 var Integer 〈ncount〉 count;
9 {np, nr, s, ncap, ncount, ntop.(np ≥ nr ∧ ncap == 0, ncount == 0, ntop == 0, s = Stack)}

10 public Stack()[PStack ( True ) -> _uninitialized >> PStack ( np == 0, nr == 0
) -> _initialized this]{

11 {np1, nr1 ∧ s = uninitialized ∧ True}
12 return unique PStack (0, 0) -> initialized st = new Stack();
13 {np1 == 0, nr1 == 0 ∧ s = initialized ∧ True}
14 }
15 public put (Item x)[ PStack (np, nr) -> initialized >> PStack

(n′
p = np + 1, nr) -> \_initialized this, Integer〈ntop, 0 ≤ ntop < ncapacity〉 >> Integer〈n′

top = ntop + 1〉 top
,

16 Integer〈ncount〉 >> Integer〈n′
count = ncount + 1〉 ]{

17 {np1, nr1, s, ncount, ntop.(np ≥ nr∧, ncount == 0, ntop == 0, s = initialized)}
18 top = top + 1;
19 array[top] = x;
20 count = count + 1;
21 this <- PStack (n′

p = np + 1, nr) -> initialized;

22 {np1, nr1, s, ncount, ntop.(np1 == 1 ≥ nr == 0∧, ncount == 1, ntop == 1, s = initialized)}
23 }
24 }

Figure 5.8: Constraints for PStack (Figure 5.2) in DRIP

5.4.5 Handling Aliases

A sound typestate type checker must be aware of all the references to an object in order to

precisely capture any possible typestate transition. To track p-typestate changes in the presence
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of aliasing we use an earlier developed approach due to Deline et al ( [9]) based on a variant

of Linear Types. With each reference of a type τ in our language, we also assign a label called

as permission. A permission records whether a given reference to an object is unique, in which

case it may be used to change the typestate of the system, else if the object is shared amongst

more than one references, we assign it an immutable permission and do not allow typestate

changes to the object’s typestate via this reference. A unique permission associated with a

parameter guarantees to the method that it can access the object only through the current

reference. An operation can downgrade (refer Rule P-let-loose) the unique permission of a

reference to immutable. Figure 5.9 presents a set of permission rules for a few of the important

expression which mutate references and hence must be tracked for alias confinement. Rule (T-f

Decl-perm) adds a unique permission to the type of a newly declared field f . Rule (T-let-perm)

is the permission assignment rule for a let-expression, the rule update the permission of both

the lhs and the rhs to shared. Rule (T-update-perm) update the permission of lhs expression

by that of the rhs expression, however, the permission of the rhs expression remains unaffected.

Rule (T-invoke-perm) confirms that the base object has a unique permission for the method to

be invoked.

This simple permission-based alias control and tracking may be made more precise using

complex linear types as discussed in adoption and focus work([51]). We leave such a study and

implementation of advanced alias control type system as a part of future work.

5.5 Calculating Loop Invariants

One of the most important challenges in automatic, inductive type checking of expressive type

systems like Liquid types [112], other refinement types, and our p-typestate type system is the

requirement to annotate loops and recursive data structures with invariants. These invariants

allow to generate modular proofs of correctness for the program in Floyd-Hoare style proofs of

program correctness and are fundamental to the termination guarantee of the p-typestate type

checking algorithm. Till now we have assumed that loop invariants are being provided by the

programmer. Unfortunately, its a daunting task even for experienced programmers to provide

such invariants. Moreover, in many cases, the loop invariants provided by the programmer may

be too weak and insufficiently precise to verify a given p-typestate property. In fact, there is

a trade-off between the ease of guessing the loop invariant and its precision, for example, the

easiest and most degenerate loop invariant for a loop may be a tautological formula true, but

such a formula is a valid loop invariant, but does not add any value to prove a property at the

exit of the loop. Thus, it is important to be able to automatically calculate adequate inductive

loop invariants for programs whenever possible. To tackle this challenge we present a novel and
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T-f Decl-perm

Φ,Γ ` τ : Type τ = px,s

S <: s
Φ,Γ ` τ f = new S a Φ,Γ; (f : (unique, τ))

T-let-perm

Γ(x) = (a, τx)
Γ(e) = (a′, τe)

Γ′ = Γ[x 7→ (shared, τx), e 7→ (shared, τx))]

Φ,Γ ` let x = e in stmt a Φ,Γ′

T-update-perm

Γ(e1) = (a, τx)
Γ(e) = (a′, τe)

Γ′ = Γ[e 7→ (a, τx)]

Φ,Γ ` e ← e1 in stmt a Φ,Γ′

T-invoke-perm

Φ,Γ ` e : (unique, Sb) | e : (unique, p{x,Sb}) a Φ1,Γ1

Γ(Sb :: m) = m : Ψ{b}
Ψ = ∀[O](ρ1 : τ1, ..., ρn : τn, ρn+1 : τn+1, ..., ρp : τp)
→ ∃ρr : τr (ρ′1 : τ ′1, ..., ρ

′
n : τ ′n, ρ

′
n+1 : τ ′n+1, ..., ρ

′
p : τ ′p)

Φ1,Γ1 ` e1 : τ1 a Φ2,Γ2

Φ2,Γ2 ` e2 : τ2 a Φ3,Γ3

...
Φn,Γn ` en : τn a Φn+1,Γn+1

Γn+1(ρn+1) : τn+1

...
Γn+1(ρp) : τp a Φ′′,Γ′′

∀ i ∈ [1...n].Γ′′[(ei) 7→ τ ′i ]
∀ j ∈ [n+ 1...p].Γ′′[ρj 7→ τ ′j ]

Φ,Γ ` e.m(e1, e2, ...en) : τr a Φ′′,Γ′′

Figure 5.9: Typing Rules for Permission Mutations
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simple loop invariant calculation approach based on loop acceleration technique for Presburger

definable transition systems [15, 54].

5.5.1 Calculating loop-invariants using acceleration for Presburger-

Definable Transition Systems

5.5.1.1 Acceleration:

The problem of calculating the reachable set of states (REACH) for an infinite state system

is undecidable in general. Thus, model checking infinite state systems requires “symbolic”

approach. This involves abstracting a symbolic model of the model checking problem and ma-

nipulating it to calculate fixpoints for forward and backward reachability sets. A naive fixpoint

calculation for these infinite systems may diverge in general and thus has a low probability

of termination. Acceleration [15] is a popular technique which makes the convergence of the

fixpoint calculation for such systems more frequent. The technique is analogous to abstract

widening operation from the abstract interpretation domain [39].

Definition 5.3 (Acceleration over a path π) Given a transition system T = 〈Q,Σ,Ψ, δ〉
and a sequence of action π ∈ Σ∗. Acceleration of π over T is called π -acceleration and is

defined as a relation Accπ ⊆ (Q × Q) such that (s, s’) ∈ Accπ iff ∃k ∈ N. such that s
πk−→ s’,

where s
πk−→ s’ represents a path (s

e1−→ s1
e2−→ s2... sk-1

ek−→ s’) of k consecutive transitions in

the system in δ. We say that s’ ∈ postT(π∗, s) or simply post∗(s), where postT(π∗, s) represents

the set of post reachable states by the acceleration of π over T, starting from the initial state s.

The definition could be extended to a set of starting states S, by calculating post∗(s),∀s ∈ S.

The acceleration relation Accπ is called π acceleration or just acceleration when the context is

obvious.

5.5.1.2 Computing REACH using acceleration:

The acceleration set defined above can be effectively utilized to calculated REACH for a system.

For a given subset of initial states or configurations X of the system, and a language L ⊆ Σ∗,

we define post(L, X) = {x′ | ∃x ∈ X ∧ (x, x′) ∈ Accπ ∧ ∃π ∈ L}. The set post(Σ∗, X) of all

states/configurations reachable from X(initial set of configurations) is defined as the reachability

set REACH of the system.

5.5.1.3 Using REACH for loop invariant calculation:

We model the loop invariant calculation for a program enforcing a p-typestate property as

REACH finding problem over the counter system induced by the looping construct in the pro-

gram. This reduction allows us to use known acceleration based reachable states computation
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approaches and tools. We use a Flat acceleration tool FAST [54] in our implementation to

calculate REACH for while loops in programs. The reduction is straight forward, Presburger

formulas over integer variables of the counter system for the input loop forms the symbolic

domain and restrictions on the structure of these counter system guarantees the termination of

the FAST tool. FAST calculates a Presburger definable formula representing the REACH set

for the input loop with the given initial set of states. We use this formula as a loop invariant

in p-typestate type checking to generate a modular proof of correctness of the program.

The approach assumes that the input counter system for the loop is finite linear [54] and

flattable [15]. These restrictions are fundamental to the termination of the approach which uses

a semi-algorithm to calculate REACH set. The tool’s acceleration algorithm can run on any

finite linear system and is a complete procedure for flattable finite linear systems. It provides

no termination guarantee for other general class of finite linear but non-flattable systems.

Definition 5.4 (Integer Counter System for Loops) A counter system C for a loop is a

transition system, defined as a tuple 〈Q,Σ,ΨP , δ〉. Where Q is a finite set of states, Σ is

a finite set of Presburger definable actions. These actions simulate the p-typestate contracts

associated with statements and expressions of the program. ΨP is a Presburger definable set

over m integer variables Vm used in the loop. ΨP defines guards for transitions given by δ :

(Q× Σ×ΨP ) 7→ (Q×ΨP ).

A state of C is defined as a tuple Zm assigning values to Vm. A state si satisfies a Presburger

guard φ ∈ ΨP iff si � φ.

Figure 5.10 shows the loop counter system for the while loop in the code fragment for

XMLParserSimple defined in Figure 5.16.

5.5.1.4 Complete Approach:

Figure 5.11, shows a block diagram for the invariant calculation approach. The approach re-

quires an integer counter system for the input loop. The counter system can be extracted by

analyzing the loop body for pre- and post- p-typestate annotations of expressions and state-

ments and their semantics. In this work we manually construct these counter systems for input

loops.

This loop counter system is passed as input to the FAST loop acceleration tool which gener-

ates (on termination) the REACH set for the loop as a Presburger formula in the representation

of FAST output language Armoise [75]. We built an Armoise to Z3 parser which generates corre-

sponding Z3 formula, and passes it to the type-checker. The type-checker composes the formula

with the incoming constraints using the typing rule for while expression. We finally discharge

the composed collective constraints to the Z3 solver.
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loop
i = 0 ∧ ns = b1 ∧ ne = b2 ∧
ns− ne ≥ 0 ∧N ≥ 0 ∧ (b =
0 | 1)

t1 : guard := i ≤ N ∧ ns ≥
ne ∧ b = 0
action := ns′ = ns + 1, ne′ =
ne, i′ = i+ 1

t2 : guard := i ≤ N ∧ ns ≥
ne ∧ b = 1
action := ns′ = ns, ne′ =
ne+ 1, i′ = i+ 1

Figure 5.10: Loop counter system for the while loop in Figure 5.16

Figure 5.11: Block diagram for loop invariant calculation approach
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Example: Consider Figure 5.16 from the Overview section, Figure 5.10 shows the loop

counter system for the while loop in the code fragment. The counter system defines the initial set

of states, where i is the counter variable for the loop (corresponding to the var numberscanned

in the program), b is a boolean variable representing the conditional variable in the loop body.

The counter system also defines transitions t1 and t2, which are Presburger definable actions

over index variables. The simplified loop invariant calculated by the approach in this example

is (∀ (ns, ne, b1, b2, N) ∈ (nat, nat, nat, nat, nat). ns ≤ b1 + N∧ ne ≤ b2 + N∧ ns - ne ≥ 0 ∧
ns ≥ b1∧ ne ≥ b2). This loop invariant is indeed adequate to generate an inductive proof of

correctness for the main method and prove the main method implementations in Figure 5.3 as

correct and incorrect respectively.

1 state Broadcast{
2 method sendBroadcast (_ >> _)[_ >> _]{
3 var x, y, z, N;
4 x = N; y = 0; z = 0;
5 while(true){
6 match (*){
7 case (x >= 1) { x = x + y -1; y = z + 1; z

=0; }
8 case (y >= 0) { y = y -1; z = z + 1; }
9 }default {}

10 };
11 };
12 }
13 }

Figure 5.12: Example: Simple Broadcast
Approach fails to calculate REACH

main(){
φpre
S1;
φin
←− φ

while (b) {
S2;
}
S3;
φpost

}

Figure 5.13: Loop invariant φ (specified or cal-
culated) for a program with a while loop

It is worth mentioning that loop invariant calculation approach might fail to terminate

and return the Presburger definable REACH set for several reasons: (1) The loop counter

system is not a finite linear system. (2) The counter system is not flattable. (3) The approach

timed out (for time limit > 3 min). Reasons (1) is ruled out by the assumption of the input

loop counter system. The major reason for non-termination therefore is either (2), which

although is assumed, but cannot be verified as checking flattability of a Counter system is

undecidable [54], or, in certain cases the termination is not reached in practical time limits

due to (3). Since, checking flattability of a counter system is undecidable, we cannot have

an algorithm for generating a flattable counter system for an input while-loop. Nevertheless,

we can generate a simple counter system for a while loop by using pre- and post- condition

annotations for expressions at loop entry, and loop body. Such a counter system still will not

guarantee the termination of the reachability set calculation algorithm.
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Figure 5.12 presents an example(adapted from [54]) code fragment in our core language with

a while loop and two inner conditional expressions for which the approach fails to terminate

due to reason (2). More results showing both successful calculations and failures due to reasons

(2) or (3) are discussed in section 5.7.

5.5.1.5 Completeness of the loop invariant calculation approach

Given a p-typestate annotated program P with a while loop, we present a claim for the “com-

pleteness” of our approach.

Consider Figure 5.13, Each Si is a block of statements or expressions causing p-typestate

constraints changes as depicted in the program. Thus S1 when executed in a pre- ptypestate

with associated constraint φpre, updates the constraints to φin. We abuse the notations here

and simply write this transition as (φpre;S1)⇒ φin. The formula φ represents the loop invariant

(specified or calculated) for the while loop.

Definition 5.5 (Adequate Inductive Invariant) We say the invariant φ is an adequate in-

ductive invariant for the given program specification, if following conditions hold-

• φin ⇒ φ (“inductive invariant”)

• ((φ ∧ b);S2)⇒ φ (“inductive invariant”)

• ((φ ∧ ¬b);S3)⇒ φpost (“adequate”)

5.5.1.6 “Completeness” claim:

If our computation of a loop invariant via FAST succeeds, we are guaranteed that it is the “best”

possible invariant: if the proof/type-checking does not succeed with this invariant, it cannot

succeed with any other invariant. This is essentially because this particular loop acceleration

technique returns (if it does terminate) the exact set of reachable states at the loop head.

To substantiate our claim, consider the program structure in Figure 5.13, and suppose FAST

returns an invariant φ. Suppose further that it is not sufficient (i.e. one of the three conditions

above fail). Now by virtue of the fact that φ represents the exact set of reachable states at the

loop head, it is easy to see that it will satisfy the inductiveness conditions. So it must be the

adequacy condition which fails. That is, there exists a state s satisfying φ and ¬b, such that

after doing S3 we reach a state that does not satisfy φpost. But any other proposed invariant ψ

must include φ, if it satisfies the inductiveness conditions. Hence s must be included in ψ as

well, and ψ will similarly fail the adequacy check.
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5.6 Analysis

Having discussed the Presburger definable typestates, formal language and the dependent type

system implementing the idea, in this section we analyze some important formal properties of

our p-typestate typesystem.

5.6.1 Operational semantics

We define a small-step operational semantics for the language DRIP described in Section 5.4.

The semantics describes the states and transitions associated with the auxiliary integer type

variables (both programmable and non-programmable). Such a semantics will facilitate proving

the soundness of our p-typestate typesystem. Following is a set of value definitions and maps

which we require to define a state of our program

(program variable) (PV ar) : x, f, this, γ, S, ρ
(location) (l) : li | null
(type variable) (TV ar) : programmable | Non− programmable
(type variable value) (TV alue) : N
(p-typestate value) (PtsV alue) : (φ, s).pφ,s, st FV (pφ,s) = {x1, x2....xn}
(value environment) (µ) : TV ar 7→ TV alue
(program heap) (Θ) : PV ar ↪→ l
(P-Store-environment) (Ξ) : l ↪→ PtsV alue

Table 5.3: Value Definitions for States

5.6.1.1 State of a Program

A dynamic state of a program is defined as a tuple (µ,Ξ,Θ). µ is a map from type variables

to type variable values. Θ is a partial map from program variables to locations, while Ξ is a

partial map which maps these locations to p-typestate values. A p-typestate value is represented

as ((φ, s).pφ,s st FV (pφ,s) = {x1, x2....xn}), making it similar to the p-typestate state type. It

represent a value pφ,s which is a function of φ and s with φ having type variables { x1, x2, ....xn

} possibly occurring free in φ.

Each semantic rule is defined as follows:

(µ,Ξ,Θ)[e]→ [e′](µ′,Ξ′,Θ′)

Figure 5.14 presents small-step operational semantics for some of the important DRIP expres-

sions and statements while others are pushed to the Appendix in view of limited space.
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E-var-2

x ∈ domain(Θ)
Θ(x) = lx Ξ(lx) = py,s st y = {y1, y2, ..., yn}

(µ,Ξ,Θ)[x]→ [Θ(x)](µ,Ξ,Θ)

E-de-ref

Θ(x) = lx lx 6= null
Ξ(lx) = py,s st y = {y1, ...yk, ..yn}

Θ(fj) = lfj Ξ(lfj) = pz,s st z = {yk} µ(yk) = vxk

(µ,Ξ,Θ)[x.fj ]→ [vxk](µ,Ξ,Θ)

E-let-2

Θ(x) = lx Ξ(lx) = pz,s st z = {z1, z2, ..., zn}
µ′ = µ[z 7→ Apply(v, z)] Θ′ = Θ[lx 7→ Θ(v)]

(µ,Ξ,Θ)[let x = v in stmt]→ [x/v]stmt(µ′,Ξ,Θ′)

E-mcall

Θ(y) 6= null Θ(y) = le
Ξ(le) = px,s st {x1, x2, ..., xn, s = S}

mBody(S,m) = χ {b} χ = ∀[O](ρ1 : τ1, ...ρn : τn)→ ∃ρr : τr; (ρ1 : τ ′1, ..., ρn : τ ′n)
Check(χ, µ,Ξ,Θ)

(µ,Ξ,Θ)[y.m(f1, f2, ...fp)]→ [b](µ,Ξ′ = Ξ[Θ(ρi) 7→ Ξ(Θ(fi))],Θ
′ = Θ[ρi 7→ Θ(fi)])

E-update-2

Θ(e2) = l2 Ξ(l2) = px2,s2 st x2 = {x21, x22, ..., x2n}
Θ(e1) = l1

(µ,Ξ,Θ)[e1 ← e2 in stmt]→ [stmt](µ[xs1 == s2],Ξ′[l1 7→ px2,s2 ],Θ)

E-dep-fun

FV (x) = {x1, x2, ....xn}
µ′ = µ[x1 == 0, x2 == 0, ....xn == 0, zs == Sbase]

Θ′ = Θ[xnew 7→ lx] Ξ′ = Ξ[lx 7→ px,s]

µ,Ξ,Θ[typeγ : Π(x : φ, s : S).px,s]→ [skip](µ′,Ξ′,Θ′)

E-app

Ξ(γ) = Π(φ(x1, x2, ..., xn), s).p(φ,s)

Ξ(e2) = ({x1 = v1, x2 = v2, ...xn = vn}, s = s2)

(µ,Ξ,Θ)[γ(e2)] → [pφ2,s2 st φ2 = {v1, v2, ....vn}](µ[x1 = v1, ...xn = vn, s = s2],Ξ,Θ)

Figure 5.14: Operational semantics for DRIP
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5.6.2 Type Soundness

Definition 5.6 (Safe Typing) A static typing environment (Φ,Γ) “safely types” a dynamic

state behavior of the program (µ,Ξ,Θ) represented as (Φ,Γ) � (µ,Ξ,Θ) if the following rule

applies:-

P-cover

∀xi ∈ domain(µ), µ(xi) = ni,∃φi = (xi == ni) ∈ Φ
µ‖Φ‖ (Φ,Γ) � (Ξ,Θ)
∀xi ∈ domain(Θ),Θ(xi) ∈ domain(Ξ)st

ifΞ(Θ(xi)) = pφi,sistFV (φi) = {y1, y2, ..., yn}
xi ∈ domain(Γ) Γ(xi) = p(φj ,s2) φj � φi

s2 :> s1 µ[y1, ....yn]‖Φ‖|{y1....yn}

(Φ,Γ) � (µ,Ξ,Θ)

P-sat
∀φi ∈ Φ, ∀xi ∈ FV (φi), xi ∈ domain(µ),Φ[xi 7→ µ(xi)] = true

µ‖Φ‖

P-sat-restricted
∀φi ∈ Φ, ∀yi ∈ {y1, ...yn} ∈ domain(µ),Φ[yi 7→ µ(yi)] = true

µ[y1, ....yn]‖Φ‖|{y1....yn}

Theorem 5.1 (Preservation) The language semantics preserves the safe-typing of a well

typed program. Formally, we state it as follows- Case : if e→ e′ -

Iff :

(Φ,Γ) ` e : τ a (Φ1,Γ1)

(Φ,Γ) � (µ,Ξ,Θ).

(µ,Ξ,Θ)[e]→ [e′](µ′,Ξ′,Θ′)

then,

(Φ1,Γ1) ` e′ : τ ′ a (Φ′,Γ′) and

(Φ′,Γ′) � (µ′,Ξ′,Θ′)

Case if : e ∈ value and e = v

(Φ,Γ) ` v : τ

(Φ,Γ) � (µ,Ξ,Θ)

(Φ,Γ; v : τ) � (µ,Ξ,Θ;x 7→ v)st x is fresh.

Proof: Let us try to prove the above statements for each possibly well typed term e in our

language and each possible evaluation rule applicable to the term.
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A term e can be -

• Case : e is not a value

– e can be a statement,

1. Case[LET] : (Φ,Γ) ` t := let x = e1 in stmt, In this case either of the two

evaluation rules (E-let-1 or E-let-2) might apply, lets break on both these cases

:

E-let-1 : (µ,Ξ,Θ) [let x = e′1] → [let x = e′1] (µ′,Ξ′,Θ′), where (µ,Ξ,Θ) [e1] → [e′1]

(µ′,Ξ′,Θ′) By Induction hypothesis-

(a) (Φ,Γ) ` e′1 : τ a (Φ′,Γ′).

(b) (Φ′,Γ′) � (µ′,Ξ′,Θ′)

Thus by [T-let-1], (Φ′,Γ′) ` t′ : τ ′ and using I.H. (Φ′,Γ′) � (µ′,Ξ′,Θ′).

E-let-2 : (µ,Ξ,Θ) [let x = v in stmt] → [[x/v]stmt (µ′,Ξ,Θ′), where (µ′ = µ[z 7→
Apply(v, z)] and Θ′ = Θ[lx 7→ Θ(v)]

We claim that the Apply(v) function in [T-let-2] along with the update to

Φ ∧ (nx == Apply(v)) and the static state update due to the checking of

stmtx/vapp, safely covers [using P-cover] the dynamic state change occurring

in [E-let-2] via the Apply(v, z) and change to Θ Finally, using this claim,

(Φ′,Γ′) ` t′ : τ ′ and (Φ′,Γ′) � (µ′,Ξ,Θ′).

2. Case[UPDATE] : t := e ← e1 in stmt, In this case again two evaluation rules

are applicable (E-update-1 or E-update-2), let us break on both these cases :

E-update-1 : t → t’ := (µ,Ξ,Θ)[e ← e1 in stmt] → [e ← e′1 in stmt](µ′,Ξ′,Θ′). By I.H.

(a) (Φ,Γ) ` e′1 : τ a (Φ′,Γ′).

(b) (Φ′,Γ′) � (µ′,Ξ′,Θ′)

Thus by [T-update-1](refer Appendix), (Φ′,Γ′) ` t′ : τ ′ and using I.H. (Φ′,Γ′)

� (µ′,Ξ′,Θ′).

E-update-2 : t → t’ := (µ,Ξ,Θ)[e ← e1 in stmt] → [stmt](µ,Ξ′,Θ). By I.H.

stmt is well typed.

(a) By I.H and [T-update], (Φ ∧ φ1 ∧ (xi == s1),Γ; e : pφ1,s1) � (µ′,Ξ′,Θ′).

3. Case[WHILE] : while - The invariant is sufficient for the proof no update to

the dynamic state thus the second part of Preservation statement (Φ′,Γ′) �

(µ′,Ξ′,Θ′) is trivially true(assuming the type and index environment are per-

forming only weak updates on program and type variables, which is true). Hence

we just show (Φ1,Γ1) ` e′ : τ ′ a (Φ′,Γ′).
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while [∃.φ] (e1) {e}. Again two distinct possible way of reduction of t → t’-

∗ If e1 → e′1, by T-while e′1 : bool, and let (Φ1 ∧ (e′1 == true), (Γ, e′1 : bool)) `
e : (Φ2, τ

′) Φ2 � ∃.φ, then t’ : τ ′.

∗ If e → e’, By IH (Φ1 ∧ (e1 == true), (Γ, e1 : bool)) ` e′ : (Φ2, τ
′) Φ2 � ∃.φ,

then t’ : τ ′.

4. Case[IF] : if - Standard rule, no update to the dynamic state

5. Case[SKIP] : skip

– e can be an expression.

1. Case [CALL] : t = e.m(e1, e2, ...ep), The proof uses the operational semantics for

[E-mcall], [E-comp](refer Appendix) and the typing judgments for [T-mdecl], [T-

comp] and [T-invoke]. By I.H. the preservation holds for each e1, ...., en and the

base expression e. Using [E-mcall], we have t → t’ (µ,Ξ,Θ)[y.m(f1, f2, ...fp)]→
[b](µ,Ξ′ = Ξ[Θ(ρi) 7→ Ξ(Θ(fi))],Θ

′ = Θ[ρi 7→ Θ(fi)]). The [T-invoke] rule

explicitly updates the type environment Γ and index environment Φ so that

each actual parameter satisfy the pre- contract required for the method call.

Thus the updated environment safely covers the semantics of the [E-mcall].

Using the semantics for [E-comp] and [T-mdecl] and [T-comp], we prove the

preservation for after the call expression.

2. Case [APP] : t → t’ := (µ,Ξ,Θ)[γ(e2)] → [pφ2,s2 st φ2 = {v1, v2, ....vn}](µ[x1 =

v1, ...xn = vn, s = s2],Ξ,Θ). The [T-app] rule, update the Index environment

Φ with Φ′ = Φ ∧ pr1(e2) ∧ Ω(pr2(e2)), using [P-cover], we get (Φ′,Γ) � (µ[x1 =

v1, ...xn = vn, s = s2],Ξ,Θ).

3. Case [DEREF] : The [E-de-ref] does not updates the dynamic state, thus the

preservation is triviall

• Case : e is a value. If e is a value then there is no e→ e’ and the preservation is vacuously

true.

2

Theorem 5.2 (Progress) The language small step operational semantics guarantee the re-

duction of a well typed term to a program value. We state this formally as follows-
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Iff :

(Φ,Γ) ` e : τ a (Φ′,Γ′) then

either e ∈ value

or,∃e′, s.t.

(µ,Ξ,Θ)[e]→ [e′](µ′,Ξ′,Θ′)

Proof: The idea for the proof of progress is similar to that for the preservation, we prove

that the progress statement holds for each possibly well typed term in the language and each

reduction of the term.

• Case : e is not a value.

– e can be a statement,

1. Case[LET] : t := let x = e1 in stmt.

By I.H. the Progress statement holds for e1, thus e1 is either a value or there

exists an e′1, for both these cases, the induction step for t is given by rule [E-let-1]

and [E-let-2] respectively.

∗ E-let-1, t’ = let x = e′1 in stmt.

∗ E-let-2, t’ = [x/Apply(e1)]stmt.

2. Case[UPDATE] : t := e ← e1 in stmt, Again by I.H. over e1, e1 is either a value

v or there exist a term e′1, such that e1 → e′1. Two of these cases are defined by

evaluation rules [E-update-1] and [E-update-2].

∗ E-update-1, t→ t’ := (µ,Ξ,Θ)[e← e1 in stmt]→ [e← e′1 in stmt](µ′,Ξ′,Θ′).

∗ E-update-2, t → t’ := (µ,Ξ,Θ)[e1 ← e2 in stmt] → [stmt](µ,Ξ′[l1 7→
px2,s2 ],Θ).

3. Case[WHILE] : Standard [E-while] evaluation rule.

4. Case[IF] : Standard reduction

5. Case[SKIP] : a value,

– e can be an expression, we discuss those expressions which are not a value.

1. Case[DE-REF] : t := e.f, By I.H. either e is a value or there exists e’, following

are the two cases-

∗ Case e → e’, t → t’, such that t’ := e’.f.

∗ Case e is a value, Rule [E-de-ref], defines the reduction for t → t’.
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– Case[CALL] : t := e.m(e1, e2, ...ep), By I.H., each of the e and e1, ...ep, either is a

value vi or there exists a reduction ei → e′i, giving a reduction t → t’, where t’ :=

e’.m(e′1, e
′
2, ...e

′
n). The other case where each of e and ei is a value is reduced by the

evaluation rule [E-mcall].

– Case[APP] : t := γ(e1), By I.H. either e1 is a value (which is a pair by inverse typing

rules) or there exists e′1, such that e1 → e′1.

– Case[PAIR] : A pair is a value.

– Case[CONSTANT] : A constant is value.

• Case : e is a value. This is vacuously true.

2

Theorem 5.3 (Soundness) The typestate system presented in section 5.4 is sound. Formally,

if a term t is a well typed term in our typestate system, then it will never be a stuck term, more

specifically the term is guaranteed to satisfy all the pre and post p-typestate contracts associated

with instructions accessing the term (protocol implementation soundness), further if a usage

(main method) might violate any contract for any term in the program, the static type system

will Ill type the implementation (protocol usage soundness).

Proof: By Theorem 5.1 and 5.2 2

5.6.3 Annotation Overheads

One of the major limitations of a verified design-by-contract system and language like DRIP

and earlier such systems is the burden of contract annotation on the programmer. The problem

is common to the languages with richer types, like refinement types [112], however since these

types are mostly defined for functional languages with no side-effects, inferring some portion

of type and refinement annotations is relatively easier in their case as compared to DRIP. We

plan to apply some of these techniques which are used for learning refinement types([129]) to

DRIP in our future work.

Another important challenge in automatic, inductive type checking of expressive type sys-

tems like Liquid types [112], other refinement types, and our p-typestate type system is the

requirement to annotate loops and recursive data structures with invariants. These invariants

are fundamental to the termination guarantee of the p-typestate type checking algorithm. Un-

fortunately, providing these invariants is hard, and in many cases the loop invariants provided

by the programmer may be too weak and insufficiently precise to verify a given p-typestate

166



property. To tackle this challenge we developed a novel loop invariant calculation approach

based on loop acceleration technique for Presburger definable transition systems [15, 54]. The

details of the approach are beyond the scope of this work and cannot be presented in the view

of limited space. Interested readers should refer to the Appendix, which provides a high level

view of the approach. We also present the loop-invariant calculation results in section 5.7.

5.7 Results

In this section, we present a small set of useful programs with important non-regular program

properties which cannot be modelled using regular typestate but have been statically verified

using p-typestates.

5.7.1 Implementation

The parser for the core language concrete syntax has been implemented using JavaCC [69]

parser generator 1. The prototype p-typestate type checker has been implemented in Java

and contains three major components. (i) A Presburger constraint generator which generates

constraints based on p-typestate typing rules. We showed earlier via examples how these

constraints are constructed using typing rules and further discussed the approach more formally

in the Analysis section 5.6. (ii) A loop invariant calculator, described earlier which uses the

FAST tool. (iii) A Presburger constraint solver. The constraint generator has been written

in Java. The loop invariant calculator requires an Armoise (internal formula representation

language of FAST) to Z3 parser and this parser has been written in Java. We use Z3 solver for

checking the validity the generated constraints.

5.7.2 Results

Tables 5.4, 5.5, present a set of statically verified p-typestate properties and invariants which

we have implemented in our language. Each of these implementations has a set of states,

with field, method and type declarations, modelling a p-typestate property automaton for the

property and a main method with a sequence of language statements and expressions. The

typechecker verifies each of the states, methods, fields, and type declarations, thereby verifying

protocol implementation correctness. Further, it uses these verified declarations to inductively

verify, that the program in the main method satisfies the p-typestate property automaton,

thereby verifying a protocol usage correctness which we also call p-typestate property verification

(refer Section 5.3). The table gives property names, their short description (formal/informal)

and reports a calculated loop invariant if applicable, or a timeout using the loop invariant

1Available at - https://github.com/ashishtheaegis/p-typestate-parser.git
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Property
Name

Property Description LI*

Producer-
Consumer

Producer(P), Consumer(C), Shared-
Channel(sc)
items produced (np), items consumed
(nc)
S(sc) = {open, close}, sc.produce() iff
open, sc.consume() requires iff open
φ = ∀op ∈
{open, close, produce, consume}∗.
np ≥ nc

∀np, nc ∈
N,∃k1, k2, N ∈
N.(np − nc) ≥
(k2−k1)∧k1, k2 ∈
[0, N ]

SizedArray
and SizedList

Array sized N (A(N)), ith index access
(A[i])
φ1 = ∀A[i]. i ≤ N
φ2 = A.add() iff N ≤ k ∈ N

∀i ∈ N.∃N ∈
N.(0 ≤ i ≤ N)

Binary Search Binary search implementation using
SizedArray. No runtime array bounds
checks needed

∀i ∈ N.∃N ∈
N.(0 ≤ i ≤ N/2) ∨
(N/2 + 1 ≤ i ≤ N)

List Reversal
and Append

List Sized N1 (L1(N1)), List Sized N2
(L2(N2))
L1 = [x1, x2..., xN1], L2 = [y1, y2..., yN2]
L = [x1, x2..., xN1, yN2, yN2−1..., y1]
φ = size(L) = N1 + N2

∀N1, N2 ∈
N.∃size ∈
N.(size =
N1 +N2)

Banking
Problem

Account (Acc), Amount Withdrawn
(W), Amount Deposited (D)
S(Acc) = {active, inactive},
Acc.withdraw() iff active,
Acc.deposit() iff active
φ = ∀ transactions. D ≥ W

∀D,W ∈
N,∃k1, k2, N ∈
N.(D−W ) ≥ (k2−
k1)∧k1, k2 ∈ [0, N ]

Train Run-
ning Protocol

Train speed control protocol [15] S

StackModel
[Figure 5.21]

Simulating a Stack with pushm, pop,
top, empty and acceptance using p-
typestates

N/A

Table 5.4: Statically Verified p-typestate Properties. *- LI = (Loop Invariant) S = Success, F
= Failure, T/O = Timed Out, N/A = No loops
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XMLParser XMLParser (P), open tag 〈eli〉
close tag 〈/eli〉
φ =∀σ ∈ {〈eli〉, 〈/eli〉}∗. σ ∈ Dyckm

N/A

XMLParser-
Simple

XMLParser (P), open tag 〈el〉
close tag 〈/el〉
φ =∀σ ∈ {〈el〉, 〈/el〉}∗. σ ∈ Dyck2

∀ns, ne ∈
N,∃k1, k2, N ∈
N.(ns − ne) ≥
(k2−k1)∧k1, k2 ∈
[0, N ] where ns =
number of 〈el〉 and
ne = number of
〈/el〉

CFL-Parser
(anbn -Parser)

Given a graph G, with nodes {
n1, n2, ..., nN } and each edge labeled
l ∈ {a, b}, let π(p) = string generated
by labels of a path p
φ1 = ∀p ∈ {a, b}∗ s.t. ∃ a path p b/w
ni and nj, s.t. z = π(p) ⇒
φ1 = z ∈ anbn
φ2 = ∀z′, s.t. z = z′x, z′ ∈ ajbk, where
j ≥ k

∀n, j, k ∈ N.(j ≤
n ∧ k ≤ n ∧ 0 ≤
j, k ∧ j ≥ k

IVP checking Given an interprocedural control flow
graph G, with edges labeled with
method calls (ci) and returns (ri).
φ1 =∀σ ∈ {eli, /eli}∗. σ ∈ Dyckm
φ2 =∀σ′ s.t. σ = σ′.x D(σ′) ≥ 0

N/A

Broadcast Simple Broadcast example Figure 5.12 F
Synchronized
Inc/Dec

Integer counter shared between two
processes which increments and decre-
ments the counters.

TO (> 3 mins.)

Table 5.5: Statically Verified p-typestate Properties. *- LI = (Loop Invariant) S = Success, F
= Failure, T/O = Timed Out, N/A = No loops
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calculation approach for the property. Some of the property names are annotated with the

figure representing its implementation. Each of these examples is approximately 100-200 lines

of code in our concrete language syntax and took a few seconds for Presburger constraints

generation by the type-checker and solving using Z3 on an Intel Xeon, 8 core CPU@2GHz with

3 GB of memory. We make each of these properties and their implementation in our language,

available online at [8]. We briefly explain each of these here:

XMLParserSimple XMLParserSimple is a variant of XMLParser in Java, over a binary set

of XML elements, Σ = { 〈el〉, 〈/el〉 }. A string z ∈ Σ∗ is well-formed iff, ∀z = xy, D(x) ≥
0 and D(z) = 0, where D(p) = (# 〈el〉 in p - # 〈/el〉 in p) is called the Dyck distance of a

string p. The problem is beyond the expressiveness of regular typestates as argued earlier in

the Overview section.

closestart

open

1 : 〈startReading(), (ns =
ne = 0)�(ns′ = ns, ne′ =
ne)〉

2 :
〈scanStartElement(), (ns ≥
ne)�(ns′ = ns + 1, ne′ =
ne, ns′ ≥ ne′)〉

3 :
〈scanEndElement(), (ns >
ne)�(ns′ = ns, ne′ =
ne+ 1, ns′ ≥ ne′)〉

4 : 〈endOfFile(), (ns =
ne)�(ns′ = ns, ne′ =
ne, ns′ = ne′)〉

Figure 5.15: A p-typestate Property Automaton for XMLParserSimple

The property is formally defined by a p-typestate property automaton in Figure 5.15. Coun-

ters ns and ne count the number of start and end elements scanned. The boolean field isOpen

stores the open or close states of the parser. Method startReading starts reading the input

document changing the state of the parser from close to open and is valid only in the close

state of the parser. Methods scanStartElement and scanEndElement scan a start and end element

respectively and are valid in the open state of the parser iff the substring z scanned thus far

has Dyck dictance greater than or equal to zero, i.e. ns ≥ ne. Finally, method endOfFile checks

the terminal condition for well-formedness of z, i.e. ns == ne.

Figure 5.16 presents an implementation of a simple variant of an XML parser in our language.
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1 state XMLParserSimple case of Parser{
2

3 type SafeSimpleParser : Pi (ns, ne, ns ≥ ne) → Parser;
4 List<Element> elementsScanned = new ArrayList<Element>();
5 Boolean isReading;
6 method unique Element startReading()[unique SafeSimpleParser (n, m) → Close � unique

SafeSimpleParser (n, m) → Open]{
7 this.isReading = true;
8 this <- unique SafeSimpleParser(n, m) -> Open;
9 }

10 method unique Element scanStartElement(unique StartElement selement)[unique SafeSimpleParser
(n, m, n ≥ m) → Open � unique SafeSimpleParser (n’=n+1, m’=m, n’ ≥ m’) → Open]{

11 elementsScanned.add(selement);
12 this <- unique SafeSimpleParser(n+1, m) -> Open;
13 }
14 method unique Element scanEndElement(unique EndElement eelement)[unique SafeSimpleParser (n,

m, n > m) → Open � unique SafeSimpleParser (n’=n, m’=m+1, n’ ≥ m’) → Open]{
15 elementsScanned.add(eelement);
16 this <- unique SafeSimpleParser (n, m+1) -> Open;
17 }
18 method boolean endOfFile()[unique SafeSimpleParser (n, m, n == m) → Open � unique

SafeSimpleParser (m’= m, n’= n, n’ == m’ ) → Close]{
19 this.isReading = false;
20 this <- unique SafeSimpleParsr(n , m, n == m) -> Close;
21 }
22 }
23

24 method void main(){
25 var unique SafeSimpleParser (0, 0) → Close sP =
26 new XMLParserSimple{elementsScanned = new ArrayList<Element>(); isReading=flase;};
27 List<Element> storedElements = new ArrayList<Element>();
28

29 sP.startReading();
30 sP.scanStartElement(new StartElement());
31 sP.scanStartElement(new StartElement());
32 sP.scanStartElement(new StartElement());
33 sP.scanStartElement(new StartElement());
34

35 sP.scanEndElement(new EndElement());
36 var numberScanned = 1;
37 val N = storedElements.size();
38 while(numberScanned <= 3){
39 Element el =
40 storedElements.remove();
41 match(el){
42 case (StartElement){
43 scanStartElement(el);
44 }
45 case (EndElement){
46 scanEndElement(el);
47 }
48 default {}
49 numberScanned++;
50 };
51 };
52 sP.scanStartElement(new StartElement());
53 }

Figure 5.16: An XMLParserSimple implementation and its usage
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Producer-Consumer Given a shared Channel object sc and two processes, a Producer

named P, and a Consumer named C, the Producer-Consumer property checks that a Chan-

nel sc remains in a consistent for all possible sequence of operations performed by P and C over

sc. The operations performed by these processes may be, opening a Channel (open), closing

a Channel (close), producing an item over the Channel by P (produce) and consuming a pro-

duced item from the Channel by C (consume). The channel may either be an OpenChannel or

a ClosedChannel. Let state(Channel), be an auxiliary method returning the regular state of the

Channel and let np and nc, represent the number of items produced and consumed respectively

over sc at any instant. A Channel is consistent iff :

• An item is produced or consumed only over an OpenChannel.

• For all sequence of operations over sc, (np ≥ nc).

Figure 5.17, shows the above defined property in a concise format using a p-typesate property

automaton.

closestart

open

1 : 〈openChannel(), (np =
nc = 0)�(np′ = np, nc′ =
nc)〉

2 : 〈produce(), (np ≥
nc)�(np′ = np + 1, nc′ =
nc, np′ ≥ nc′)〉

3 : 〈consume(), (np >
nc)�(np′ = np, nc′ =
nc+ 1, np′ ≥ nc′)〉

4 : 〈closeChannel, (np =
nc)�(np′ = np, nc′ =
nc, np′ = nc′)〉

Figure 5.17: A p-typestate Property Automaton for Producer-Consumer program

Binary Search Given an Array, A[0...n] or a List, L[0...n] of n elements, a classic binary

search algorithm searches for a given input element in the array. It recursively searches for

the element in two sub-arrays A[0..n/2] and A[n/2 +1 ...n]. Each of these searches is prone to

array bound violations, meaning trying to read beyond an array boundary. Classically, these

bound violations are checked using runtime array bound checks. We present an implementation

of binary search, using SizedArray and SizedList, which statically guarantees that there are no

possible array bound violations. This obviates the need for costly and error-prone runtime

array bounds checks.
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Figure 5.18, shows the above defined property in a concise format using a p-typesate property

automaton.

openstart

2 : 〈addE(el), (n, k, n ≥
0, n < k)�(n′ = n + 1, k′ =
k, n′ ≥ 0, n′ ≤ k′)〉

2 : 〈get(i), (n ≥ 0, i ≥ 0, i <
n)�(n′ = n, n′ ≥ 0, i′ =
i, i′ ≥ 0, i′ < n′)〉

Figure 5.18: A p-typestate Property Automaton for SizedArray access (Used in Binary Search)

List Reversal and Append Given two lists L1 and L2, the list reversal and append opera-

tion, reverse the second list L2 and appends it to the first list L1. We present an implementation

of this operation in our language to statically verify, that the size of the new list is sum of the

sizes of the two sublists. The property is important since it requires to statically tracking the

size of lists at the same time, this example presents an expressive limitation of our p-typestate

system. We can verify a property, that the new list has L2 in reversed order. Such a property

requires a type system which can keep track of relationships between elements which is not

possible using a Presburger definable p-typestate. We discuss this limitation and a possible

solution in our future work section.

Banking Problem The banking problem presents a problem similar to the producer-consumer

property as it requires counting and comparing number of operations, named Deposit (D) and

Withdraw (W), in a given sequence of operations. The state of a bank Account named Acc

may be either active or inactive. An account Acc is consistent iff:

• All the deposits and withdrawals happen over an active account.

• For all sequence of operations, number of Deposit (D) ≥ number of Withdraws (W).

This example application shows the ubiquitous nature of the problem as it appears in dif-

ferent domains. We present an implementation of the problem in our language which statically

guarantees the consistent state of an Acc.
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Train Speed Control Protocol The train speed control algorithm controls the speed of the

train and guarantees the collision-free running of the trains. A train could be in one of the four

states viz. ontime, braking , late or stopped. Thus a safety property for such a control system

could be defined as - “the train is never late (or early) by more than 20 seconds”. The speed

control system is regulated via counters keeping track of number of beacons b passed on the

rails and global clock tick s, besides this there is another counter which starts in the braking

state and counts the ticks during breaking state d. Each state is defined as - The train is ontime

iff s− 9 < b < s+ 9, its late iff b ∈ [s− 9, s− 1], its early iff b ≥ s+ 9 finally, when b = s+ 1,

the train is on time again.

One property of interest to avoid collisions is- ∀time, | b − s |≤ 20, which could not be

enforced using regular typestate. We present a counter machine for the train speed control

protocol in Figure 5.19.

CFL-Parser (anbn) We implement a Context Free Language parser over a graph in our

dependently typed language. Given a graph G, with nodes { n1, n2, ..., nN } and each edge

labeled l ∈ {a, b}, let π(p) = string generated by labels of a path. The parser checks that for

any path p, the string π(p) generated by the path belongs to the Context-free language anbn.

We use p-typestates to verify such a property by verifying following two properties over π(p)

and each substring of it:

• φ1 = ∀p ∈ {a, b}∗ s.t. ∃ a path p b/w ni and nj, s.t. z = π(p) ⇒ φ1 = z ∈ anbn

• φ2 = ∀z′, s.t. z = z′x, z′ ∈ ajbk, where j ≥ k ∀n, j, k ∈ N.(j ≤ n∧k ≤ n∧0 ≤ j, k∧ j ≥ k

Interprocedural Valid Path Checking Given an interprocedural control flow graph G,

we abstract over method call and return edges in G. A path over such an abstract graph is

interprocedurally valid path iff, the sequence generated by the call and return edges along the

path belong to the language of matching parenthesis. We implement a path verifier in our

p-typestate oriented language to statically verify iff a path is interprocedurally valid. We can

see that the problem is similar to the XMLParser property, thus the limitations discussed apply

in this case as well.

Broadcast The problem involves two processes, and three shared variable x, y, z between

them, and depending on the value of xandy either the first or the second process updates the

shared variables and broadcast the updated value. The example is crucial as it shows, limitation

of our loop invariant calculation approach. The limitation involves inability of FAST approach

to calculate the REACH set for the system. A simple code fragment showing the model of the

system is shown in Figure 5.12.
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timestart brake

stoplate

01

02

03 04

05

06

07
08

09

10

01 〈(b = s+ 9)/(b′ = b+ 1 ∧ d′ = 0)〉
02 〈(b = s+ 1)/(s′ = s+ 1 ∧ d′ = 0)〉
03 〈{(b < s+ 9)/(b′ = b+ 1)} ∨ {(b > s− 9)/(s′ = s+ 1)}〉
04 〈{(d < 9)/(d′ = d+ 1) ∧ (b′ = b+ 1)} ∨ {(b > s+ 1)/(s′ = s+ 1)}〉
05 〈(d = 9)/(b′ = b+ 1)〉
06 〈(b > s+ 1)/(s′ = s+ 1)〉
07 〈(b = s+ 1)/(s′ = s+ 1 ∧ d′ = 0)〉
08 〈(b = s− 9)/(s′ = s+ 1)〉
09 〈(b = s− 1)/(b′ = b+ 1)〉
10 〈(b < s− 1)/(b′ = b+ 1)〉

Figure 5.19: A p-typestate property automaton for train speed control system, property |
b− s |≤ 20
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Synchronized Increment and Decrement The problem again involves two processes shar-

ing an integer counter and incrementing and decrementing the counter. The example is taken

from the original work on FAST [54] and again shows the limitation of the loop invariant calcu-

lation approach. The tool times out while calculating the REACH set with a timeout threshold

of 3 minutes.

SizedList Figure 5.20 presents a sized version of a List with a p-typestate SizedListTy, cap-

turing the size of a List. Each method of the SizedList state is annotated with a pre- and

post- p-typestates. For example, method append takes an input list of a p-typestate (unique

SizedListTy(m) → List), representing a list of Size m and requires the size of base List object to

be n and returns a List of size m+n. The type checking algorithm statically verifies these pre-

and post p-typestate annotations. We have implemented sized versions of arrays and lists as a

library where sizes are checked and enforced using the p-typestate type system.

1 state SizedList case of List{
2 type SizedListTy : Pi (n) -> List;
3 var SizedCons head;
4 var SizedList tail;
5 method void prepend(elem)[unique SizeListTy(n) -> List >> unique SizedListTy(n+1) -> List]{
6 this.head = new SizedCons {var value = elem; var SizedCons next = this.head;};
7 this <- SizedListTy(n+1) -> List;
8 }
9 method void add(elem)[unique SizedListTy(n) -> List >> unique SizedListTy(n+1) -> List]{

10 this.tail = new SizedList {var head = new elem; var tail = new plaid.lang.NIL;};
11 this <- SizedListTy(n+1) -> List;
12 }
13 method void append(unique SizedListTy(m) -> List list)[unique SizedListTy(n) -> List >>

unique SizedListTy(n+m) -> List]{
14 match (list.tail){
15 case Nil{
16 this.tail = this.tail.add(list.head);
17 this <- SizedList(n+1) -> List; }
18 case Cons{
19 this.tail = this.tail.append(new Cons {var value = list.head.value; var next

= list.tail;});
20 this <- SizedList(n+m) -> List; }
21 default{java.lang.System.out.println("bad");}
22 };
23 }
24 method reverse()[unique SizedListTy (n) -> List >> unique SizedListTy (n) -> List]{
25 match (this){
26 case Nil{ this; }
27 case Cons{
28 new Cons{var value = this.tail.reverse(); var next = this.tail;};
29 }
30 default{this;}
31 };
32 }
33 }

Figure 5.20: Statically checked SizedList using p-typestate
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StackModel Figure 5.21 presents an intricate example. Here we simulate a stack using coun-

ters. The StackModelType represents a p-typestate, modeling a stack, with (c1, c2) representing

two binary strings, such that, the least significant bits of c1 and c2 defines the top element of

the stack. For example, if c1 = “0b00” and c2 = “0b01”, then “01” is the stack top. Each

stack element(StackElementWithId) has an Id, given by a binary string b1b2. Thus at any time,

strings c1, c2 define the contents of the stack. Pushing an element with Id (b1b2) is achieved

by updating c1 and c2 to c1’ and c2’ respectively by multiplying each by 2 and adding b1

and b2 respectively. To pop an element, c1, c2 are divided by 2. Following the definition of

StackModel, the main program shows a code sequence creating call and return elements (ci and

ri), and a sequence of push and pop operations. Our typechecker successfully possible violation

of the p-typestate property by the given code sequence. It is worth noting that, our prototype

typechecker for the language at present does not has support for these multiplication and di-

vision operations over binary strings, thus some part of this example is verified manually. We

plan to update the implementation to capture these binary string operations. This may require

a sound formulation for capturing of binary arithmetic using Presburger arithmetic formulas.

We use this StackModel to model and verify various important context-free properties like

XMLParser, CFL-Parser for a context-free language anbn, etc.

XMLParser Given an alphabet set Σ = { 〈e1〉〈/e1〉, 〈e2〉, 〈/e2〉, ...〈em〉, 〈/em〉 } of m types

of opening and closing XML tags, let σ ∈ Σ∗. We use the StackModel to implement a general

XML parser to verify that, a string σ belongs to the general Dyckm language. Note here, that

we assume that each of these opening and closing tags are read sequentially in the program,

i.e. the program reads these symbols on after the another without loops. This restriction can

be attributed to the limitation of our loop-invariant calculation approach which cannot handle

the loop automata for such a general case.

5.8 Immediate Future Work

There are several directions for an immediate extensions of the work discussed in this chapter.

Extension of the p-typestates typesystem with gradual typing will aid in increasing the precision

of the verification and will also aid in reducing the burden of annotation on the programmer. A

modular p-typestate type system on the lines of Deline et. al. [82] will be really useful. Another

interesting direction of future work will be to extend the p-typestate and core language with

richer features like polymorphic types, concurrency, etc. This extension will lead to further

investigation on the connections between Session types [120], normal typestates and p-typestate.

A complete formal characterization and applications of the loop invariant calculation approach
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1 state StackModel{
2 var Stack k1 = new Stack; // regular stack
3 var Stack k2 = new Stack;
4 type StackModelType : Pi (c1, c2) -> Stack;
5 type StackElementWithId : Pi (b1, b2) -> BoundedInteger;
6 // Apply binary pop on both the objects
7 method void push(unique StackElementWithId (b1, b2) -> BoundedInteger element) [unique

StackModelType (c1, c2) -> Stack >> unique StackModelType (c1’, c2’ , t1 = c1 * 2, t2 =
b1 * 1, c1’ = t1 + t2 , t3 = c2 * 2, t4 = b2 * 1, c2’ = t3 + t4) -> Stack]

8 {
9 this.k1.push(b1);

10 this.k2.push(b2);
11 this <- StackModelType (c1’, c2’, c1’ = (c1 * 2) + (b1 * 1 ), c2’ = (c2 * 2) + (b2 * 1)) ->

Stack;
12

13 }
14 method void pop(unique StackElementWithId (b1, b2) -> BoundedInteger element) [unique

StackModelType (c1, c2, b1 == c1, b2 == c2) -> Stack >> unique StackModelType (c1’, c2’,
c1’ = c1 / 2, c2’ = c2’/2) -> Stack]{

15 this.k1.pop();
16 this.k2.pop();
17 this <- StackModelType (c1’, c2’, c1’ = c1/2 , c2’ = c2/2 ) -> Stack;
18 }
19 }
20 method void main(){
21 var unique StackElementWithId(0b0 , 0b1) -> BoundedIneger c1 = new BoundedInteger;
22 var unique StackElementWithId(0b1 , 0b0) -> BoundedIneger c21 = new BoundedInteger;
23 var unique StackElementWithId(0b1 , 0b1) -> BoundedIneger c31 = new BoundedInteger;
24 var unique StackElementWithId(0b1 , 0b1) -> BoundedIneger c32 = new BoundedInteger;
25 var unique StackElementWithId(0b1 , 0b0) -> BoundedIneger c22 = new BoundedInteger;
26 var unique StackElementWithId(0b1 , 0b0) -> BoundedIneger r21 = new BoundedInteger;
27 var unique StackElementWithId(0b1 , 0b1) -> BoundedIneger r31 = new BoundedInteger;
28 var unique StackElementWithId(0b1 , 0b1) -> BoundedIneger r32 = new BoundedInteger;
29 var unique StackElementWithId(0b1 , 0b0) -> BoundedIneger r22 = new BoundedInteger;
30 var unique StackElementWithId(0b0 , 0b1) -> BoundedIneger r1 = new BoundedInteger;
31

32 var unique StackModelType (0b0, 0b0) -> Stack sm = new Stack;
33 sm.push(c1); sm.push(c21); sm.push(c31);
34 sm.push(c32); sm.push(c22); sm.pop(r22);
35 sm.pop(r31); // error
36 sm.pop(r31);
37 sm.pop(r21);
38 sm.pop(r1);
39

40 }

Figure 5.21: Stack simulation using p-typestate

178



presented in this chapter will be another useful addition.

5.9 Chapter Summary

In this chapter, we presented a definition of regular typestates and the motivation for a more

expressive notion of typestates. Following this, we introduced the idea of Parameterized type-

states (p-typestates) and formalized the concept. We presented a way to implement these p-

typestates in a typestate-oriented programming language using dependent types. We discussed

the challenges associated with the p-typestate type system, typechecking, and our approach to

handling these challenges. We concluded the chapter by presenting a novel and simple loop

invariant calculation technique and its integration to our language. We empirically showed the

use cases for our language and invariant calculation.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

Analyzing and verifying behavioral properties of programs is a challenging problem. The chal-

lenges further surge with rising complexity of programs, with additions of newer programming

features. On the other hand, these behavioral properties can themselves become increasingly

complex, leaving current algorithms, tools and systems to verify the dynamic behavior of pro-

grams, ineffective. Type systems are the most prevalently used static, light-weight verification

systems for verifying certain properties of programs. Unfortunately, simple types are inade-

quate at verifying many behavioral/dynamic properties of programs. Typestates can tame this

inadequacy of simple types, by associating each type in a programming language with a state

information. This state is an abstraction which captures the behavior of the program and aids

in reasoning about it.

There are two major challenges in statically analyzing and verifying typestate properties

over programs. The first one is the increasing complexity of programs. The original work

on typestates can only verify/analyze a typestate property over very simple programs, lack-

ing dynamic memory allocation and aliasing. Subsequently, the following works on typestates

extended and improvised the analysis over programs with aliasing and dynamic memory. How-

ever, the state-of-the-art static typestate analysis works still cannot handle formidably rich

programming features like asynchrony, library calls and callbacks, concurrency, etc.

The second challenge is in handling the nature of the properties being verified. The original

and the current notion of typestates can only verify a property definable through a finite-

state abstraction. This makes the state-of-the-art typestate analysis and verification works

inadequate to verify useful but richer non-regular program properties. For example, using

classical typestates we can verify a property like, pop be called on a stack only after a push
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operation, but we cannot verify a nonregular program property like, number of push operations

should be at least equal to the number of pop operations. Another example is that of a

well-formed XML file which must have matching opening and closing XML tags. Currently,

these behavioral properties are mostly verified/enforced by programmers at runtime via explicit

checks. Unfortunately, these runtime checks are costly, error-prone, and lay an extra burden

on the programmer.

Towards handling the first challenge, we develop an asynchrony-aware typestate analysis

over Android Inter-Component Control Flow Graph (AICCFG), an intermediate program rep-

resentation for Android applications. The AICCFG soundly models the asynchronous control

flow semantics (single threaded, non-preemptive) of ICC, the associated lifecycle of components,

and interactions between them. The asynchrony-aware static analysis and formal modeling of

Android control flow is a small yet significant step towards a sound modeling and static type-

state (and other static analyses) analysis for Android applications. This problem of building

a sound and practically precise static analysis for Android applications is still an unsolved

problem, even after great interest shown recently from the research community. There have

been a few earlier attempts at formal modeling of Android applications, but none have focused

towards capturing the correct asynchronous control flow semantics in these applications before

this thesis. Our modeling and the asynchronous static analysis idea is not limited to Android

applications, as the programming model and the control flow features of Android discussed in

the thesis are shared by other event-based programs like iOS applications, web browser exten-

sions applications, etc. Thus our ideas, model and analysis are easily extensible towards other

similar programs and programming models.

Towards handling the other challenge, we develop a typestate-oriented programming lan-

guage incorporating parameterized typestates (p-typestate). This allows us to create correct by

construction imperative programs guaranteeing useful p-typestates properties. Statically verify-

ing real-world programs against rich non-regular behavioral properties/contracts, like “number

of messages sent over a channel, must be always greater than or equal to the number of messages

received”, is one of the long-term goals of programming languages and verification community.

The verification community has made certain strides towards this goal through works on verify-

ing infinite state systems. Unfortunately, these works are mostly applicable to abstract models

of the programs rather than real-world programs. Further, these models have to be provided by

the user or the programmer using these verification techniques. This makes these verification

techniques inadequate to efficiently verify real-world programs.

The programming language community has been even more moderate in its movement to-

wards this goal. Types and type systems, which have been the cornerstone of the light-weight
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static verification technique for programming languages has mostly been applied to verify and

reason about the structural properties of programs (properties remaining constant throughout

the lifetime of data). Typestates extended the concepts of simple types with states and state

transitions. This makes them adequate to capture a few behavioral properties. Unfortunately,

available typestate works prior to this thesis have been limited both by their expressiveness and

by the lack of tools and techniques for typestate analysis over programs with complex features.

This thesis provides solutions to both these limitations. The Parameterized Typestates, the

dependent typestate system and the typestate-oriented programming language, provides an ex-

pressive and easy way to adopt the language and a subsystem to create correct-by-construction

programs, verifying rich non-regular typestate properties. The language subsystem may act

as a basis for building systems with automatic statically verified behavioral properties of pro-

grams, like the properties defined over sessions between processes, and other session-related

and contractual properties.

Automatic checking of rich logical properties and corresponding typechecking for type sys-

tems require invariants for loops and recursive structures to be provided by a programmer.

This is a big hindrance for programmers to adopt these richer type systems. The p-typestate

type system also requires such a loop invariant from the programmer, we placate this burden

from the programmers by presenting a novel loop invariant calculation approach for Presburger

definable systems.

Overall, this thesis is a significant step towards static verification of behavioral properties

of programs. It discusses, the fundamental challenges associated with using the current static

analysis and programming languages support for verifying these properties (w.r.t. typestates)

and provides both theoretical and practical solutions to these challenges and shows its effec-

tiveness over a rich set of benchmarks.

6.2 Future Work

Verifying behavioral properties of programs in a light-weight, automatic, and modular fashion

is a challenging and popular research problem. In this thesis, we have taken a small step

towards this goal of generating tools, techniques and programming language support to develop

programs with guaranteed behavioral properties. There are various possible directions for future

work, we discuss a few in this section.

Consider again the complexity of programs vs. richness of properties graph discussed in

Chapter 1. Extending our thesis along both the axes leads to a few useful possible future

works. Along the y-axis, we can first extend our asynchrony-aware static analysis approach

with concurrency. A large percentage of Android applications are multi-threaded, extending
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the analysis approach to handle multi-threading control and data flows can be a challenging and

interesting problem as none of the state-of-the-art static analysis works for Android applications

handle multi-threading in a sound and practically precise way. Similar to this, Java reflection

is another programming feature which although discussed by various works for Android static

analysis yet is still unsolved.

Along the x-axis, looking for logical families more expressive than the Presburger definable

logic, such that the type-checking over these still remains decidable can be really useful to verify

richer program properties than p-typestate properties. For instance, Relational Properties, like

defining a relation between two elements in an array or some other structure, cannot be defined

using Presburger definable logic. Such a property can be used to statically model functional

properties of programs like verifying a sorted array or checking a Binary Search Tree (BST)

structure of a BST, etc.

Similarly, extending the thesis above the diagonal will allow developing p-typestate analysis

for Android applications. This can be a major extension of the thesis as Android has various

program properties like dynamic permission granting and revoking which cannot be modeled

using finite automata. p-typestates can effectively verify such properties.

The p-typestates system presents a statically typed type system, there can be a possible

extension of the p-typestate type system with gradual typing. This will aid in increasing the

precision of the verification and will also aid in reducing the burden of annotation on the

programmer. A modular p-typestate type system on the lines of Deline et. al. [82] will be

really useful.

Another interesting direction of future work will be to extend the p-typestates and core

language with richer features like polymorphic types, asynchrony, concurrency, etc. This exten-

sion will lead to a further investigation of the connections between Session types [120], normal

typestates and p-typestates. This can further aid in extending the p-typestates to concurrent

and distributed setting using session types.

A complete formal characterization and applications of the loop invariant calculation ap-

proach presented in our paper will be another useful direction for future work.
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Appendix

Subtyping Rules for DRIP

Subtyping Subtyping relation in our language is reflexive and transitive.

T-Sub-pair
Φ,Γ ` τ1 <: τ2 τ3 <: τ4

Φ,Γ ` pair(τ1, τ3) <: pair(τ2, τ4)

(T-Sub-pair) defines subtyping rule for pair(τ1, τ2) type is a standard pair wise subtyping

T-Sub-formula

Φ,Γ ` φ1 : Type, φ2 : Type
φ1 � φ2

φ1 <: φ2

Rule (T-Sub-formula), defines subtyping rule for two Presburger formulas φ1 and φ2. A

formula φ1 <: φ2 iff φ1 satisfies φ2, where satisfaction is defined as a standard Presburger

formula implication.

T-Sub-px,s

Φ,Γ ` x1 : φ Φ,Γ ` x2 : φ
Φ,Γs1 : S Φ,Γs2 : S

Φ,Γ ` x1 <: x2 Φ,Γ ` s1 <: s2

px,s{x1/x, s1/s} <: px,s{x2/x, s2/s}
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