CS57335 Program Synthesis

#9.Weighted Enumerative Search &
Representation Based Search

Ashish Mishra, August 30, 2024

Recap: Scaling enumerative search

Prune Prioritize
Discard useless subprograms Explore more promising

candidates first

m * N2 m* (N - 1)?

p = { [@][N..N] |
X[N..N] , «—

.}

dequeue
this first

Order of search

Enumerative search explores programs by depth / size
* Good default bias: small solution is likely to generalize
e But far from perfect

Result:
* Scales poorly with the size of the smallest solution to a given spec

Top-down search (revisited)

Turn off the rightmost sequence of 1s:

00101 -> 00100
01010 -> 01000
10110 > 10000

| 1] x
+

nhnom o©nmE=

AN — (0 |

nn nmum h N O

n n

Xx&(1+(x|x-1))

\'4
\'4

Explores many unlikely programs

Biasing the search

ldea: explore programs in the order of lieklihood, not size

Q1: how do we know which programs are likely?

* hard-code domain knowledge
* learn from a corpus of programs
* learn on the fly

Q2: how do we use this information to guide search?
* our focus today!

Weighted enumerative search

Example: DeepCoder
Balog et al. DeepCoder: Learning to Write Programs. ICLR"17

Probabilistic Grammars
Weighted top-down search
Weighted bottom-up search

DeepCoder

Input: |0-examples

Output: Program in
a list DSL

[-17 -3 4 11 0 -5 -9 13 6 6 -8 11]
> [-12 -20 -32 -36 -68]

+ DeepCoder

<- [int] A SQL inspired DSL
<- Filter (<0) a

<- Map (*4) b

<- Sort c

<- Reverse d

m Q N C QL

DeepCoder

Input: |O-examples

[-17 -3 4 11 0@ -5 -9 13 6 6 -8 11]
> [-12 -20 -32 -36 -68]

neural network

P —

~ o u
I Il or o
= S 5 5 & & 2 b s E z 3 U
= 3 8 & - " m § 3§ o© ©° : g 5
component * I £ S 2 £ £ 2 A A2 £ S 5§ R =z B
- 0 0 1 0 0 0 .0 .0 0 0 0 2 0 .0 0
weights | - 0 0 B

DROP

-

o | ACCESS

l weighted search

Output: Program in a list DSL
Goal: Minimize sum of component weights

=
= — % -
= < - =
2 5 x 3 = X s
a 5 S & 0 £ g 5
N 0 S = O = = n
4 0 2 Nl 0 0 .0 0

DeepCoder: search strategies

Top-down DFS <>
* Picks expansions for the current (@2 C5>>5 >
non-terminal in the order of L GO - Csas D
probability <S>
Sort-and-add ..
e start with N most probable
functions |
* when search fails, add next N w
functions
Pros and cons? C x&(1#(x]x-1)) =

Recall: goal is to explore programs in the order of total weight!

Weighted enumerative search

Probabilistic Grammars
Weighted top-down search
Weighted bottom-up search

Probabilistic Language Models

Originated in Natural Language Processing
In general: a probability distribution over sentences in a language
e P(s)fors €L

In practice:
 must be in a form that can be used to guide search
* for enumerative search: probabilistic (or weighted) grammars

Probabilistic (Tree) Grammar

regular tree production probability
grammar (given context)
\ /

<G,§>

Production probability: :R X Ts:(N) — [0,1]
o forexample: (S —->x15)=03 p(S—>x|x —5)=0.0001
* only defined for contexts where rule’s LHS is the leftmost non-terminal
e probabilities of all productions in the same context add up to 1:

V.S ->"TtAT €Ty = Z P(rit)=1
redom(P(.|T))

Term probability:

e letS =1y >t 1y "2 ... T, =1Tbhe thne unique derivation of partial program t

p@) =| | o1
1=1

Types of context

$:RXTs(N) - [0,1]

\

In general, can depend on any part of the context term!

But this is unwieldy
* bad for learning
* bad for (some) search algorithms

In practice we want to restrict the context
. PCEFG Philip Resnik ACL ‘92

* N-grams
* PHOG

Probabilistic Context-Free Grammars (PCFG)

$(R)

§$:R—[0,1] S -> © 0.13

S -> 1 0.13

Encodes the popularity of each S -> X 0.18
production (operation) S -> S5 +5 0.11
S -> S - S 0.11

» here: variable more likely than constant, S -> S5 &S5 0.12
plus more likely than shift S => S ‘ S 0.12
S -> S K« 'S 0.05

S => S > S 0.05

Probabilistic Context-Free Grammars (PCFG)

#(R)
S -> © 0.13
S -> 1 0.13
S -> X 0.18
S -> S + S 0.11 ; N &
S -> S-S 0.11
S -> S &S 0.12 26 B R G TG
S -> S| s 012 T x&(1+(x[x-S)) > 1.6e-5
S -> S KK S 0.05
S -> S > S 0.05

 x&(1+(x|x-1)) >
1.7e-8

N-grams

N[left sibling, parent] -> rhs Encodes likelihood of a production in a
fixed context

* fixed set of AST nodes determined relative

S[x, -] . Opz to the focus nonterminal

X,-] -> 7 . .

SEx.-1 -5 x 000 e.g. left sibling and parent C& D
S[x,-1 -> S + S 0.12 C+)
S[x,-] -> S - S 0.12

S[1,+] -> 1 0.26 * here: x is not likelyinx - S

S[1,+] -> X 0.25 but likelyin1 + S

S[1,+] -> S + S 0.19

S[1,+] -> S - S 0.08

Probabilistic Higher-Order Grammar (PHOG)

The same fixed context might not work for every problem
|dea:

1. define context as a program that traverses the AST

2. learn the best context together with probabilities

Bielik, Raychev, Vechev. PHOG: Probabilistic Model for Code. ICML'16

PHOG Example

awaitReset = function() {

return defer.promlise;

}

l— ReturnStatement

MemberExpression
v 88 Identifier:defer o
Y
Property:promisell©
Pl
) p—rt + 1 CallExpressi
awaitRemoved = function() { juiExpression
MemberExpression
Identifier:defer
- - - { t
Property:reject
fall (funCtlon (error) { Identifier:error
. 1 ™ ReturnStatement
lf (error.StatuS = 401) { - LMemberExpression
t:ldentifier:defer o
s o - Property: ? Prediction 3

} position

defer.reject (error);

1) ; i
return defer.| promise 0.67
} notify 0.12
resolve (0.11

reject 0.03

1. Find interesting context ®

2. Use PHOG rules:
afcontext] — B

P
Property[promise] — promise 0.67
Property[promise] — notify 0.12
Property[promise] — resolve 0.11
Property[promise] — reject 0.03
(d) PHOG
PCFG rules: o« — 3
P
Property — x 0.00
Property — vy 0.00
Property — notify 0.00
Property — promise 0.

PHOG Example

l— ReturnStatement
MemberExpression

t: Identifier:defer

L Property:promise |}

l— CallExpression
L MemberExpression

=~ Tdentifier:error

#= ReturnStatement
MemberExpression

t Identifier:defer

Property:? Prediction
position

o
Y
o

t Identifier:defer

Property:reject

QO
A
Q

1. Find interesting context m

2. Use PHOG rules:
alcontext] — 3

P
Property[promise| — promise 0.67
Property[promise| — notify 0.12
Property[promise| — resolve 0.11
Property[promise| — reject 0.03
(d) PHOG
PCFG rules: a« — 3
P
Property — X 0.005
Property — Yy 0.003
Property — notify 0.002
Property — promise 0.001

How to get the context

Representation-based
Search for Synthesis

The problem statement

Behavioral constraints = examples

0] <> [0]
5,1] 2 [1,5,0]

Search strategy?

Enumerative
Representation-based
Stochastic
Constraint-based

L ::= sort(L) |
| L+ L |
N ::= find(L,N)

:114171236)6)912)5] 9 [1)2)43716]

Structural constraints = grammar

L[N..N]

Representation-based search

ldea:

1. build a data structure that compactly represents good parts of the
program space

2. extract solution from that data structure

Compact term representation

Consider the space of 9 programs:

f(a) + f(a) f(a) + f(b) f(a) + f(c)
f(b) + f(a) f(b) + f(b) f(b) + f(c)
f(c) + f(a) f(c) + f(b) f(c) + f(c)

Can we represent this compactly?

* observation 1: same top level structure,
independent subterms

Compact term representation

Consider the space of 9 programs:

f(a) + f(a) f(a) + f(b) f(a) + f(c)
f(b) + f(a) f(b) + f(b) f(b) + f(c)
f(c) + f(a) f(c) + f(b) f(c) + f(c)

Can we represent this compactly?

* observation 1: same top level structure,
independent subterms

e observation 2: shared sub-spaces

Compact term representation

Consider the space of 9 programs:

f(a) + f(a) f(a) + f(b) f(a) + f(c)
f(b) + f(a) f(b) + f(b) f(b) + f(c)
f(c) + f(a) f(c) + f(b) f(c) + f(c)

Can we represent this compactly?

* observation 1: same top level structure,
independent subterms

e observation 2: shared sub-spaces

Key idea: use an and-or graph!

Representation-based search

and/or graph

Version Space Algebras Finite Tree Automata Equivalence Graphs
(VSA) (FTA) (e-grpahs)

Version Space Formulation

Hypothesis space H

o Space of possible functions - ou

Version Space vs, ,c u

* 1S the original hypothesis space
* pis aset of examples .,

®* heVS,peVioeD hi)=o

Hypothesis space provides restriction bias

e Defines what functions one is allowed to consider
e Preference bias needs to be provided independently

Set of Operations to

verSi()n Space AlgEbra manipulate and

compose VSs

ldea: build a graph that succinctly represents the space of all
programs consistent with examples

 called a version space

Operations on version spaces:

e learn <1, o> = VS

* VS, n VS, > VS

 extract VS - program
Algorithm:

1. learn a VS for each example

2. intersect them all
3. extract any (or best) program

Version Space Algebra

example:
union node

direct set

Version Space Algebra

union node

Volume of a VSA V(VSA)

(the number of nodes)

Size of a VSA
(the number of programs)

|[VSA]

V(VSA) = O(log|VSA|)

direct set

VSA-based search

Mitchell: Generalization as search. Al 1982

Lau, Domingos, Weld. Version space algebra and its application
to programming by example. ICML 2000

Gulwani: Automating string processing in spreadsheets using
input-output examples. POPL 2011.

* Follow-up work: BlinkFill, FlashExtract, FlashRelate, .

e generalized in the PROSE framework

FlashFill: Automating String Processing in
Spreadsheets Using Input-Output Examples [Gulwani ‘“11]

A language for text manipulation:

Simplified grammar:

E ::= F | concat(F, E) “Trace” expression

F ::= cstr(str) | sub(P, P) Atomic expression

P ::= cpos(num) ‘ pos(R, R) Position expression
R ::= tokens(T,, ..., T,) Regular expression

T ::=C | C+ Token expression

C ::=ws | digit | alpha | Alpha | $ | ~ | ..

FlashFill Example

0123456789..
“Hello POPL 2024” -> “POPL’2024”

“Goodbye PLDI 2021” - “PLDI’2021” E ::= F | concat(F, E)
F ::= cstr(str) | sub(P, P)
P ::= cpos(num) | pos(R, R)
R ::= tokens(T,, ..., T,)
concat(
sub(pos(ws, Alpha), pos(Alpha, ws)), T ::=C | C+
concat(
Cstr‘(ff)ll),

sub(pos(ws, digit), pos(digit, $))))

VSAS for Flashfill

Recall operations on version spaces:

e learn <i, 0> 2> VS
* VS, n VS, > VS
« extract VS -2 program

F | concat(F, E)
cstr(str) | sub(P, P)

cpos(num) | pos(R, R)
tokens(T,, ..., T,)
C | C+

How do we implement 1learn?

* define learny<i, o>
for every non-terminal N

* build VS top-down,
propagating <1, 0> the example

— 20 U M m
I

Learning atomic expressions

01234561738

learn. <“POPL 2024”7 - “20247>

learn;

(cstr(<2024”)}) <“POPL 2024” m
-2 5>

match “POPL Z

{ws, alpha+ ws}

— 20 U ™M

learn;
match “2024~

learn;
<“POPL 2024”

-2 9

::= cstr(str) | sub(P,, P,)
::= cpos(num) | pos(R,, R,)
: 1= tokens(T,,
c:= C | C+

vey T0)

Learning trace expressions

learn, <“POPL 2024” > 24> E ::= F | concat(F, E)

Learning trace expressions

learn, <“POPL 20247 - “224”> E ::= F | concat(F, E)

F = ...

learn; concat, learn,
J
learn, learn. \4
24 2
U
w learn;
v 2 v

’ learng
'y) T Ty

VSAS for Flashfill

Recall operations on version spaces:

e learn <i, 0> =2 VS
* VS, n VS, D VS
e extract VS -2 program F e

E ::

F | concat(F, E)
cstr(str) | sub(P, P)

cpos(num) | pos(R, R)
tokens(T,, ..., T.)
C | C+

How do we implement intersection? P ::
e top-down R ::
* union: intersect all pairs of children T ::
* join: intersect children pairwise

Intersection

“POPL 20247 - “2024” “ 3M 2012”7 > “2012”

{cstr(<2024”)) sub,, (cstr(<2012”)} | fsubs

{ws, alpha+ ws} {digit+} {alpha+ ws} {digit+}
{alpha+ ws}

VSAS for Flashfill

Recall operations on version spaces:

e learn <i, 0> 2> VS
* VS, n VS, 2 VS
 extract VS -2 program

F | concat(F, E)
cstr(str) | sub(P, P)

cpos(num) | pos(R, R)
tokens(T,, ..., T,)
C | C+

How do we implement extract?

* any program: just pick one child
from every union

* best program: shortest path in a DAG

- 20 U M m
1|

Discussion

Why could we build a finite representation of all solutions?
* Could we do it for this language?

E = F + F

k€Z +isinteger addition
F ::= R | X

* What about this language?

E ::=E+ 1| x

DSL restrictions: efficiently invertible

Every operator has a small, easily computable inverse
 Example when an inverse is small but hard to compute?

The space of sub-specs is finite

e either non-recursive grammar
 or finite space of values for the recursive non-terminal (e.g. bit-vectors)
* Or every recursive production generates a strictly smaller spec

E ::= F | concat(F, E) learn. ‘18

learn;”’ concat, learn; 18

PR()SE [Polozov, Gulwani "15]

Ranking function

Grammar r :: Program -> Int
A ::=f(B, C) | ...

B ::= g(D, E) | ...

>emantics PROSE VSA learning
f i (B,) ->A framework algorithm
f (b, ¢) = ...

Inverse semantics

f1:: A ->{(B, O)}
f-1a=...

https://microsoft.github.io/prose/

Synthesis frameworks

synthesis framework = a highly-configurable synthesizer

structural constraints
(DSL)

framework solution

behavioral constraints

Synthesis frameworks

® Sketch (https://people.csail.mit.edu/asolar/)

®* Rosette (https://emina.github.io/rosette/)

® see also: https://www.cs.utexas.edu/~bornholt/post/building-synthesizer.html

®* PROSE (https://www.microsoft.com/en-us/research/project/prose-framework/)

VSAs Again

Version Space Formulation

Hypothesis space H

o Space of possible functions - ou

Version Space vs, ,c u

* 1S the original hypothesis space
* pis aset of examples .,

®* heVS,peVioeD hi)=o

Hypothesis space provides restriction bias

e Defines what functions one is allowed to consider
e Preference bias needs to be provided independently

Partial Ordering of hypothesis

Partial order » c,

e . Is “better” than »,

Ex: For boolean hypothesis
e “better” == more general

® nChye (h =h)

For booleans, VS forms a lattice

Partial Orders

Set P

Partial order < such that Vx,y,z&P

¢ X <X (reflexive)

e X<vyandy=<sximpliesx=y (asymmetric)
e X<vandy=<zimpliesx<z (transitive)

Can use partial order to define

e Upper and lower bounds
e Least upper bound
e Greatest lower bound

Upper Bounds

If SC P then

« X&P is an upper bound of S if Vy&S. y < x
o X&EP is the least upper bound of S if

e X isan upper bound of S, and
« x =<y forall upper boundsy of S

e V -join, least upper bound, lub, supremum, sup

e v Sistheleast upper bound of S
e XV Vistheleast upper bound of {x,y}

e Often written as v as well

Lower Bounds

If S C P then

— XEP is a lower bound of S if Vy&ES. x <y

— XEP is the greatest lower bound of S if

* X is a lower bound of S, and
» vy <X for all lower bounds y of S

— A - meet, greatest lower bound, glb, infimum, inf

* A S is the greatest lower bound of S
* X AY is the greatest lower bound of {x,y}

e Often written as - as well

L attices

If X A yand x v y exist for all x,y&P
then P is a lattice

If AS and vS exist forallSCP
then P is a complete lattice

All finite lattices are complete

Example of a lattice that is not complete

e |ntegers |

e Foranyx, vEI, x v y=max(x,y), X A y=min(x,y)
« But v land A | do not exist

o | U {+20,—0 }is a complete lattice

Partial Ordering of hypothesis

Partial order »c»,

e . Is “better” than »,

Ex: For boolean hypothesis
e “better” == more general

® nChye (h =h)

For booleans, VS forms a lattice

® h,h, €VS=>hNhy=h Ah, €VS . :
v o Most specific hypothesis that

satisfies the observations

Boundary set representable

You can represent a VS by the pair (G,S) where

* G is most general hypothesis (i.e. 1)
e Sis the most specific (i.e. 1)

Applies in general when hypothesis space is partially ordered and
version space is a lattice

Update

Uwvs, d) = {p e Vs ‘ p(i) = o where d = (i, 0)}
» Subset of a version space satisfying a new example d

Ex: For boolean HS
e VS=(G,S)
¢ Ifa’z(i,true)

UVvs,d) = (G, SVAx. if x =ithentrue else false)

¢ If d= (i,false)

Uwvs,d) = (G/\ Ax. if x =ithen false else true, S)

Example: FindSuffix

rs;: move to the position right before the next occurrence of .

FS.,
—

We shall go on to the end. We |[shall fight in France, we |shall fight on

the seas and oceans, we shall fight with growing confidence and FS g
growing strength in the air,...
FS"Shall"
FS"Shall fight"
FS"Shall fight on"

FS.

shall fight on the seas and oceans, we shall fight..."

Example: FindSuffix

rs;: move to the position right before the next occurrence of .

\ FS.
We shall go on to the end, shall fight in France, we |shall fight on
the seas and oceans, we |shall\fight with growing coﬂence and ESo g
growing strength in the air,...
FS"Shall"
FS"Shall fight"
FS"Shall fight on"

FS.

shall fight on the seas and oceans, we shall fight..."

Example: FindSuffix

rs;: move to the position right before the next occurrence of .

FSH "

We shall go on to the end‘./We\tll fight in France, we |shall fight on

the seas and oceans, we |shalkfight with growing coﬂence and ESogpy
growing strength in the air,...

FS"Shall"

FS"Shall fight"

Example: FindSuffix

rs;: move to the position right before the next occurrence of .

FSnShan

We shall go on to the end‘./We\tll fight in France, we |shall fight on

the seas and oceans, we |shalhNfight with growing coﬂence and
growing strength in the air,...

FS"Shall"

FS"Shall fight"

ldea

If your hypothesis space is partially ordered and your VS are
boundary set representable, you can represent and search very
efficiently

If they are not?

Break them down into simpler hypothesis spaces!

Union

VSupYU VS p=VSuun, b

FindSuffix U FindPrefix

\
We shall go on to the end, shall fight in France, we |shall fight on
the seas and oceans, we |shalhNfight with growing coﬂence and

growing strength in the air,...

FS(“sh”-"shall fight ”)
U

FP(llwe] _ ll’ We”

FindSuffix U FindPrefix

N N
We shall go on to the end, shall fight in France, we |sha|| fight on
the seas and oceans, we |shalhNfight with growing coﬂence and

growing strength in the air,...

FS(“sh”-"shall fight ”)

Join

VSy p, X VSyp, =
{{hy. hy) ‘ hy € VSyp.» by € VS p, C({hy,h,), D))
« Where p,={4}_, and p,-{a)_ and o={(d.a))

i=0..n

* ((m.n). p) Means that ¢.1,) is consistent with the input output pairs in »

What does ..,y mean? What about (4,.4,)?
e Pair

o Composition (u.n) =n.n and (a.da) = w,.in. dy.oun
Independent join: ¢ is unnecessary

e |t's a property of ..
e True for pair, not for composition

Representation-based search

and/or graph

Version Space Algebras Finite Tree Automata Equivale‘nce Graphs
(VSA) (FTA) (e-grpahs)

ops: learn-1, intersect, extract W
DSL: efficiently invertible
similar to: top-down prop,
but can infer constants

Logsitics

® Submission deadline, Sunday, No extension!
® Scores for the reading assignments, this Tuesday!
®* We will start the Project selection.
®* Next Class:
* FTA
® E-graphs

® Equivalences.

Finite Tree Automata

- final (root) state

states

states final state(s) * 1 o eitione
A = (QIF) Qf)A>

ranked transitions
alphabet f(Ch: ""qn) —q o

VSAvs FTA

Both are and-or graphs

FTA state = VSA union node

* in VSAs singleton unions
are omitted

FTA transition = VSA join node

'TA-based search

Synthesis of Data Completion Scripts using Finite Tree Automata
Xinyu Wang, Isil Dillig, Rishabh Singh, OOPSLA’17

Program Synthesis using Abstraction Refinement
Xinyu Wang, Isil Dillig, Rishabh Singh, POPL’18

Searching Entangled Program Spaces
James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-
Lezama, Nadia Polikarpova. ICFP'22

'TA-based search

Synthesis of Data Completion Scripts using Finite Tree Automata
Xinyu Wang, Isil Dillig, Rishabh Singh, OOPSLA’17

Program Synthesis using Abstraction Refinement
Xinyu Wang, Isil Dillig, Rishabh Singh, POPL’18

Searching Entangled Program Spaces
James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-
Lezama, Nadia Polikarpova. ICFP'22

Example

Grammar
N ::= id(V) | N+ T | N * T
2 | 3

X

—
|

Spec

1 =29

PBE with Finite Tree Automata

(4,Z) {(N, 9)}
Ae{N,T,X} o final states

~. —
A =(Q,F,Qr,A)
N

transitions
alphabet
f(Q1: Ll Qn) —

: *
1d, +, +(<N,1>,<T,2>) > <N, 3>

PBE with Finite Tree Automata

N = dd(V) [N+ T | N*T ()

T::=2]3 [NEY 9
* h =

1309 id (3

(4] .
3]

Discussion

What do FTAs remind you of in the enumerative world?
 FTA ~ bottom-up search with OE

How are they different?

* More size-efficient: sub-terms in the bank are replicated, while in the
FTA they are shared

* Hence, can store all terms, not just one representative per class
* Can construct one FTA per example and intersect
* More incremental in the CEGIS context!

'TA-based search

Synthesis of Data Completion Scripts using Finite Tree Automata
Xinyu Wang, Isil Dillig, Rishabh Singh, OOPSLA’17

Program Synthesis using Abstraction Refinement
Xinyu Wang, Isil Dillig, Rishabh Singh, POPL’18

Searching Entangled Program Spaces
James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-

Lezama, Nadia Polikarpova. ICFP'22

Abstract FTA

Challenge: FTA still has too many states

ldea:
* instead of one state = one value
* we can do one state = set of values (= abstract value)

Abstract FTA

id(V) I[N+ T | N*T ()
T ::=21|3 |

x

129

What now?

2]

* idea 1: enumerate from reduced space

e idea 2: refine abstraction!

[Wang, Dillig, Singh POPL'18]

Abstract FTA

N :
T::=2\3|:
Ve O

1 =29

Predicates: {even, < 3, ...}

id(V) [N+ T | N*T ()

solution: 1d(x)*3

3

