CS5733 Program Synthesis #8. First Order Theories and SMT Solvers

Ashish Mishra, August 27, 2024

EUPhony

- Q. What does Euphony use as behavioral constraints? Structural constraint? Search strategy? How are they different from EUSolver?
	- Logical formula capturing input/output examples
	- Probabilistic Higher Order Grammar (PHOG)
	- A* variant for weighted top-down search.

EUPhony

• Q. Consider Fig 2b, where the synthesizer is unrolling the sentential form Rep(x,"-",S). When the search is guided by a PHOG, it considers the weighted productions shown in Fig 2a (top). What would these productions look like if we replaced the PHOG with a PCFG? With 3-grams? Do you think these other probabilistic models would work as

• For this question, we missed one of the important topics, so I will cover that in the

- well as a PHOG?
	- next class.

EUPhony

• Q. Consider Theorem 3.7. Give an example of sentential forms n_i n_i , n_i and set of points pts such that n_i and n_j are equivalent on pts but not weakly equivalent.

Last lecture on Verification

Roadmap

- Previously
	- PL
	- SAT Solving
	- FOL
- Today
	- Overview FOT
	- Satisfiability Modulo Theories

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input: 1. halts and says "yes" if answer is positive, and 2. may not terminate if answer is negative.

Semi-decidability of FOL:

For every valid FOL formula, there exists a procedure (semantic argument method) that always terminates and says "yes". If an FOL formula is invalid, there exists no procedure that is guaranteed to terminate.

Motivation FOT

- FOL is very expressive, powerful and undecidable in general
- Some application domains do not need the full power of FOL.
- First-order theories are useful for reasoning about specific applications
	- We have structure in mind while reasoning about certain problems.
	- e.g., programs with arithmetic operations over integers
- FOT formalize these structures to help reasoning about them.
- Specialized, efficient decision procedures!

First-Order Theories I

First-order theory T consists of

- Signature Σ_T set of constant, function, and predicate symbols
- Set of <u>axioms</u> A_T set of closed (no free variables) Σ _T-formulae

A Σ _T-formula is a formula constructed of constants, functions, and predicate symbols from $\Sigma_{\mathcal{T}}$, and variables, logical connectives, and quantifiers.

The symbols of $\Sigma_{\mathcal{T}}$ are just symbols without prior meaning — the axioms of T provide their meaning.

First-Order Theories II

A $\Sigma_{\mathcal{T}}$ -formula F is valid in theory T (T-valid, also $\mathcal{T} \models F$), iff every interpretation \prime that satisfies the axioms of τ , i.e. $I \models A$ for every $A \in A_{\mathcal{T}}$ (T-interpretation) also satisfies F , i.e. $I \models F$

A $\Sigma_{\mathcal{T}}$ -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of \overline{T}) that satisfies F

Two formulae F_1 and F_2 are equivalent in T (T-equivalent), iff $T \models F_1 \leftrightarrow F_2$, i.e. if for every T-interpretation *I*, $I \models F_1$ iff $I \models F_2$

Note:

 \triangleright / \models F stands for "F true under interpretation I" \blacktriangleright $\top \models F$ stands for "F is valid in theory T "

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: a quantifier-free fragment of theory T is the set of quantifier-free formulae in T .

A theory T is decidable if $T \models F$ (T-validity) is decidable for every Σ_{τ} -formula F;

i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid. A fragment of T is decidable if $T \models F$ is decidable for every Σ _T-formula F obeying the syntactic restriction.

-
-

-
-
-

Common first-order theories

- Theory of equality (with uninterpreted functions) \blacktriangleright
- ▶ Peano arithmetic (first-order arithmetic)
- ▶ Presburger arithmetic
- Theory of reals \blacktriangleright
- Theory of rationals \blacktriangleright
- Theory of arrays \blacktriangleright

Theory of Equality $T_F I$

Signature:

$$
\Sigma_= : \{=,a,b,c,\cdots,f,g,h,\cdots,p,q,
$$

consists of

- \blacktriangleright =, a binary predicate, interpreted with meaning provided by axioms
- all constant, function, and predicate symbols

Axioms of T_E

- 1. $\forall x. x = x$
- 2. $\forall x, y. x = y \rightarrow y = x$
- 3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$
- 4. for each positive integer n and n-ary function symbol f , $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i$ \rightarrow $f(x_1,\ldots,x_n)=f(y_1,\ldots,y_n)$

 r, \cdots

(reflexivity) (symmetry) (transitivity)

(function congruence)

Theory of Equality T_F II

5. for each positive integer n and n -ary predicate symbol p , $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i$ \rightarrow $(p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (predicate congruence) (function) and (predicate) are axiom schemata. Example:

(function) for binary function f for $n = 2$:

$$
\forall x_1, x_2, y_1, y_2. x_1 = y_1 \wedge x_2 = y_2 \rightarrow
$$

(predicate) for unary predicate p for $n = 1$:

$$
\forall x, y. x = y \rightarrow (p(x))
$$

Note: we omit "congruence" for brevity.

$$
f(x_1,x_2)=f(y_1,y_2)
$$

Decidability of T_E I

 T_E is undecidable.

The quantifier-free fragment of T_E is decidable. Very efficient algorithm.

Semantic argument method can be used for T_E

Example: Prove

 $F: a = b \wedge b = c \rightarrow g(f(a), b) = g(f(c), a)$

is T_F -valid.

Decidability of T_E II

Suppose not; then there exists a T_{E} -interpretation / such that $I \not\models F$. Then,

1.
$$
1 \neq F
$$

\n2. $1 \neq a=b \land b=c$
\n3. $1 \neq g(f(a), b) = g(f(c), a)$
\n4. $1 \neq a=b$
\n5. $1 \neq b=c$
\n6. $1 \neq a=c$
\n7. $1 \neq f(a) = f(c)$
\n8. $1 \neq g(f(a), b) = g(f(c), a)$
\n10. $1 \neq 1$

F is T_{E} -valid.

assumption

- $1, \rightarrow$
- 1, \rightarrow
- $2, \wedge$
- $2, \wedge$
- 4, 5, (transitivity)
- 6, (function)
- 4, (symmetry)
- 7, 8, (function)
- 3, 9 contradictory

Motivation

Prove the equivalences of these two programs

int power3(int in) { int i, out_a; $out_a = in;$ for $(i = 0; i < 2; i++)$ $out_a = out_a * in;$ return out_a; $}$ (a)

In general undecidable, here bounded loops.

```
int power3_new(int in) {
int out_b;
   out_b = (in * in) * in;return out_b; }
```
(b)

Equivalence of programs a and b

- A key observation, only bounded loops,
	- Possible to compute their input/output relations
- Steps for i/o relation.
	- Remove the $out0_a = in$
	-
	-
	- Read (referr
	- Conjoin all $r(\varphi_a)$

 \wedge • Unroll the form $out1_a = out0_a * in \wedge$

Equivalence check

Replace some functions with "Uninterpreted" functions

 $out0_a = in$ \wedge $out1_a = G(out0_a, in) \wedge$ $out2_a = G(out1_a, in)$

 $(\varphi_a^{\rm UF})$

$$
\varphi^{\text{UF}}_a \land \varphi^{\text{UF}}_b \implies out2
$$

$\varphi_a \wedge \varphi_b \implies out2_a = out0_b$.

 $out0_b = G(G(in, in), in)$

 $(\varphi_b^{\rm UF})$

 $2_a = out0_b$.

Natural Numbers and Integers

Natural numbers $\mathbb{N} = \{0, 1, 2, \cdots\}$ $\mathbb{Z} = {\{\cdots, -2, -\}}$ Integers

Three variations:

- Peano arithmetic T_{PA} : natural numbers with addition, multiplication, $=$
- Presburger arithmetic T_N : natural numbers with addition, $=$
- \blacktriangleright Theory of integers $T_{\mathbb{Z}}$: integers with $+, -, >, =,$ multiplication by constants

$$
\brace{ \cdot 1, 0, 1, 2, \cdots \rbrace}
$$

 Σ_{PA} : {0, 1, +, ., =}

Equality Axioms: (reflexivity), (symmetry), (transitivity), (function) for $+$, (function) for \cdot .

And the axioms:

1. $\forall x. \neg(x + 1 = 0)$ 2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ 3. $F[0] \wedge (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$ 4. $\forall x. x + 0 = x$ 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ 6. $\forall x. x \cdot 0 = 0$ 7. $\forall x, y. x \cdot (y+1) = x \cdot y + x$ Line 3 is an axiom schema.

 $(zero)$ (successor) (induction) (plus zero) (plus successor) (times zero) (times successor)

Example: $3x + 5 = 2y$ can be written using Σ_{PA} as

 $x + x + x + 1 + 1 + 1$

Note: we have $>$ and \ge since $3x + 5 > 2y$ write as $\exists z. z$ $3x + 5 \geq 2y$ write as $\exists z. 3$

Example:

Existence of pythagorean triples (F is T_{PA} -valid): $F: \exists x, y, z. x \neq 0 \land y \neq 0 \land z \neq 0 \land x \cdot x + y \cdot y = z \cdot z$

$$
+1+1=y+y
$$

$$
z \neq 0 \wedge 3x + 5 = 2y + z
$$

$$
3x + 5 = 2y + z
$$

Decidability of Peano Arithmetic

 T_{PA} is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem Peano arithmetic T_{PA} does not capture true arithmetic: There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid. The reason: T_{PA} actually admits nonstandard interpretations.

For decidability: no multiplication

-
-
-
-

Signature $\Sigma_{\mathbb{N}}$: {0, 1, +, =}

Axioms of T_N (equality axioms, with 1-5): 1. $\forall x. \neg(x + 1 = 0)$ 2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ 3. $F[0] \wedge (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$ 4. $\forall x. x + 0 = x$ 5. $\forall x, y. x + (y + 1) = (x + y) + 1$

Line 3 is an axiom schema.

 $T_{\mathbb{N}}$ -satisfiability (and thus $T_{\mathbb{N}}$ -validity) is decidable (Presburger, 1929)

3. Theory of Integers $T_{\mathbb{Z}}$

Signature:

 $\Sigma_{\mathbb{Z}}$: {..., -2, -1, 0, 1, 2, ..., -3., -2., 2., 3., ..., +, -, >, =}

where

 \triangleright ..., -2 , -1 , 0, 1, 2, ... are constants \blacktriangleright ..., -3 , -2 , 2 , 3 , \ldots are unary functions (intended meaning: $2 \cdot x$ is $x + x$, $-3 \cdot x$ is $-x - x - x$) \blacktriangleright +, -, >, = have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$:

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.

For every Σ_N -formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$ -formula.

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equisatisfiable iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff G is $T_{\mathbb{N}}$ -satisfiable

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula l

Example: consider the $\Sigma_{\mathbb{Z}}$ -formula $F_0: \forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4.$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0 :

$$
F_1: \frac{\forall w_p, w_n, x_p, x_n. \exists y_p, y_n, z_p, z_n.}{(x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 7} > -3(w_p - w_n) + 4
$$

Eliminate $-$ by moving to the other side of \ge :

 $\forall w_p, w_n, x_p, x_n$. $\exists y_p, y_n, z_p, z_n$. F_2 : $x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 7 + 3w_n + 4$

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula II $Eliminate > and numbers$: $\forall w_p, w_n, x_p, x_n$. $\exists y_p, y_n, z_p, z_n$. $\exists u$.

 F_3 :

which is a $\Sigma_{\mathbb{N}}$ -formula equisatisfiable to F_0 .

- To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:
	- riansform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula $\neg G$,
	- \blacktriangleright decide $T_{\mathbb{N}}$ -validity of G.

 $\neg(u = 0) \wedge x_p + y_p + y_p + z_n + w_p + w_p + w_p$
= $x_n + y_n + y_n + z_p + w_n + w_n + w_n + u$ $+1+1+1+1+1+1+1+1+1+1+1$

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula III Example: The Σ_N -formula

 $\forall x. \exists y. x = y + 1$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

 $\forall x. x > -1 \rightarrow \exists y. y > -1 \land x = y + 1.$

Rationals and Reals

Signatures:

$$
\begin{array}{lcl} \Sigma_{\mathbb{Q}} & = & \{0,~1,~+ ,~- , \\ \Sigma_{\mathbb{R}} & = & \Sigma_{\mathbb{Q}} \cup \{\cdot\} \end{array}
$$

 \blacktriangleright Theory of Reals $T_\mathbb{R}$ (with multiplication)

$$
x\cdot x=2\qquad \Rightarrow\qquad
$$

 \blacktriangleright Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$
\sum_{x+x}^{2x} = 7 \qquad \Rightarrow
$$

Note: strict inequality okay; simply rewrite

 $x + y > z$

as follows:

$$
\neg(x+y=z)
$$

$=, \geq\}$

- - $x=\pm\sqrt{2}$
-
- $\Rightarrow x = \frac{7}{2}$
	-
	-
- \wedge $x + y \geq z$,

1. Theory of Reals $T_{\mathbb{R}}$ Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, with multiplication. Axioms in text. Example:

 $\forall a, b, c. b^2 - 4ac \geq 0 \leftrightarrow \exists$

is $T_{\mathbb{R}}$ -valid.

 $\mathcal{T}_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity

$$
,\ \cdot,\ =,\ \geq\}
$$

$$
\exists x. \ ax^2 + bx + c = 0
$$

Recursive Data Structures (RDS) I

Tuples of variables where the elements can be instances of the same structure: e.g., linked lists or trees.

1. Theory T_{cons} (LISP-like lists)

Signature:

 Σ_{cons} : {cons, car, cdr, atom, =}

where

 $cons(a, b)$ list constructed by concatenating a and b $car(x)$ – left projector of x: car(cons(a, b)) = a cdr(x) – right projector of x: cdr(cons(a, b)) = b $atom(x)$ – true iff x is a single-element list

<u>Note</u>: an atom is simply something that is not a cons. In this formulation, there is no NIL value.

Recursive Data Structures (RDS) II Axioms:

- 1. The axioms of reflexivity, symmetry, and transitivity of $=$
- 2. Function Congruence axioms

$$
\forall x_1, x_2, y_1, y_2. x_1 = x_2 \land y_1 = y_2 \rightarrow \text{cons}(x_1, y_1) = \text{cons}(x_2, y_2)
$$

$$
\forall x, y. x = y \rightarrow \text{car}(x) = \text{car}(y)
$$

$$
\forall x, y. x = y \rightarrow \text{cdr}(x) = \text{cdr}(y)
$$

3. Predicate Congruence axiom

$$
\forall x, y. x = y \rightarrow (atom(x) \leftrightarrow
$$

\n- 4.
$$
\forall x, y
$$
. $car(cons(x, y)) = x$
\n- 5. $\forall x, y$. $cdr(cons(x, y)) = y$
\n- 6. $\forall x$. $\neg atom(x) \rightarrow cons(car(x), \neg (x)) = 7$. $\forall x, y$. $\neg atom(cons(x, y))$
\n

Note: the behavior of car and cons on atoms is not specified

 $T_{\rm cons}$ is undecidable Quantifier-free fragment of $T_{\rm cons}$ is efficiently decidable

(left projection) (right projection) (construction) $=$ x $(atom)$

Lists with equality

2. Theory T_{cons}^E (lists with equality) $T_{\text{cons}}^E = T_E \cup T_{\text{cons}}$ Signature:

 Σ_{E} \cup Σ_{cons}

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of T_E and T_{cons}

 T_{cons}^E is undecidable Quantifier-free fragment of T_{cons}^E is efficiently decidable

Example: The Σ_{cons}^E -formula

$$
F: \operatorname{car}(x) = \operatorname{car}(y) \wedge \operatorname{cdr}(x) = \operatorname{cdr}(y) \wedge \operatorname{cdr}(y)
$$

$$
\rightarrow f(x) = f(y)
$$

 $\wedge \neg \mathsf{atom}(x) \wedge \neg \mathsf{atom}(y)$

Suppose not; then there exists a $\mathcal{T}^E_{\text{cons}}$ -interpretation *I* such that $I \not\models F$. Then,

Lines 6 and 11 are contradictory, so our assumption that $I \not\models F$ must be wrong. Therefore, F is T_{cons}^E -valid.

mption

 \rightarrow , \wedge \rightarrow , \wedge \rightarrow , \wedge \rightarrow , \wedge

\rightarrow

), $\mathsf{cdr}(y))$

(function)

onstruction)

onstruction)

9, (transitivity)

function)

First-Order Theories

Demo CVC5

Input Format: SMT-LIB 2

https://cvc5.github.io/

First, directives. E.g., asking models to be reported:

(set-option : produce-models true)

Second, set background theory:

 $(set - logic$ QF_LIA)

Standard theories of interest to us:

- QF_LRA : quantifier-free linear real arithmetic
- QF_LIA : quantifier-free linear integer arithmetic
- QF_RDL: quantifier-free real difference logic
- QF_IDL: quantifier-free integer difference logic

SMT-LIB 2 does not allow to have mixed problems (although some solvers support it outside the standard)