CS5733 Program Synthesis #8. First Order Theories and SMT Solvers

Ashish Mishra, August 27, 2024

EUPhony

- Q. What does Euphony use as behavioral constraints? Structural constraint? Search strategy? How are they different from EUSolver?
 - Logical formula capturing input/output examples
 - Probabilistic Higher Order Grammar (PHOG)
 - A* variant for weighted top-down search.

EUPhony

- well as a PHOG?
 - next class.

• Q. Consider Fig 2b, where the synthesizer is unrolling the sentential form Rep(x,"-",S). When the search is guided by a PHOG, it considers the weighted productions shown in Fig 2a (top). What would these productions look like if we replaced the PHOG with a PCFG? With 3-grams? Do you think these other probabilistic models would work as

• For this question, we missed one of the important topics, so I will cover that in the

EUPhony

n1 = Rep("-",	".", x) r	12 = "-"	pts = [""]	only P2 < n2 is \epsilon
n1 = x + 1 + S	n1 = x	+ 2 + S	pts = [1]	
n1 = "-" + "."	n1 = "-	••• + S	pts = [""]	

 Q. Consider Theorem 3.7. Give an example of sentential forms \$n_i\$, \$n_j\$ and set of points pts such that n_i and n_j are equivalent on pts but not weakly equivalent.

Last lecture on Verification

Roadmap

- Previously
 - PL
 - SAT Solving
 - FOL
- Today
 - Overview FOT
 - Satisfiability Modulo Theories

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input: 1. halts and says "yes" if answer is positive, and 2. may not terminate if answer is negative.

Semi-decidability of FOL:

For every valid FOL formula, there exists a procedure (semantic argument method) that always terminates and says "yes". If an FOL formula is invalid, there exists no procedure that is guaranteed to terminate.

Motivation FOT

- FOL is very expressive, powerful and undecidable in general
- Some application domains do not need the full power of FOL.
- First-order theories are useful for reasoning about specific applications
 - We have structure in mind while reasoning about certain problems.
 - e.g., programs with arithmetic operations over integers
- FOT formalize these structures to help reasoning about them.
- Specialized, efficient decision procedures!

First-Order Theories I

First-order theory T consists of

- \triangleright Signature Σ_T set of constant, function, and predicate symbols
- Set of <u>axioms</u> A_T set of <u>closed</u> (no free variables) Σ_T -formulae

A Σ_T -formula is a formula constructed of constants, functions, and predicate symbols from Σ_{T} , and variables, logical connectives, and quantifiers.

The symbols of Σ_T are just symbols without prior meaning — the axioms of T provide their meaning.

First-Order Theories II

A Σ_T -formula F is valid in theory T (<u>T-valid</u>, also $T \models F$), iff every interpretation I that satisfies the axioms of T, i.e. $I \models A$ for every $A \in A_T$ (T-interpretation) also satisfies F, i.e. $I \models F$

A Σ_T -formula F is satisfiable in T (T-satisfiable), if there is a T-interpretation (i.e. satisfies all the axioms of T) that satisfies F

Two formulae F_1 and F_2 are equivalent in T (*T*-equivalent), iff $T \models F_1 \leftrightarrow F_2$,

i.e. if for every *T*-interpretation *I*, $I \models F_1$ iff $I \models F_2$

<u>Note</u>:

I ⊨ F stands for "F true under interpretation I"
 T ⊨ F stands for "F is valid in theory T"

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of the theory.

Example: a quantifier-free fragment of theory T is the set of quantifier-free formulae in T.

A theory T is <u>decidable</u> if $T \models F$ (T-validity) is decidable for every Σ_T -formula F;

i.e., there is an algorithm that always terminate with "yes", if F is T-valid, and "no", if F is T-invalid. A fragment of T is <u>decidable</u> if $T \models F$ is decidable for every Σ_T -formula F obeying the syntactic restriction.

Common first-order theories

- Theory of equality (with uninterpreted functions)
- Peano arithmetic (first-order arithmetic)
- Presburger arithmetic
- Theory of reals
- Theory of rationals
- Theory of arrays

Theory of Equality T_F

Signature:

$$\Sigma_{=}$$
: {=, a, b, c, · · · , f, g, h, · · · , p, q, h

consists of

- > =, a binary predicate, interpreted with meaning provided by axioms
- all constant, function, and predicate symbols

Axioms of T_E

- 1. $\forall x. x = x$
- 2. $\forall x, y. x = y \rightarrow y = x$
- 3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$
- 4. for each positive integer *n* and *n*-ary function symbol *f*, $\forall x_1,\ldots,x_n,y_1,\ldots,y_n$. $\bigwedge_i x_i = y_i$ $\rightarrow f(x_1,\ldots,x_n) = f(y_1,\ldots,y_n)$

 $r, \cdots \}$

(reflexivity) (symmetry) (transitivity)

(function congruence)

Theory of Equality T_E II

5. for each positive integer n and n-ary predicate symbol p, $\forall x_1, \ldots, x_n, y_1, \ldots, y_n$. $\bigwedge_i x_i = y_i$ $\rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))$ (predicate congruence) (function) and (predicate) are <u>axiom schemata</u>. Example: (function) for binary function f for n = 2:

$$\forall x_1, x_2, y_1, y_2. \ x_1 = y_1 \land x_2 = y_2 \quad \rightarrow$$

(predicate) for unary predicate p for n = 1:

$$\forall x, y. \ x = y \ \rightarrow \ (p(x))$$

<u>Note</u>: we omit "congruence" for brevity.

$$f(x_1, x_2) = f(y_1, y_2)$$

Decidability of T_E I

 T_E is undecidable.

The quantifier-free fragment of T_E is decidable. Very efficient algorithm.

Semantic argument method can be used for T_E

Example: Prove

 $F: a = b \wedge b = c \rightarrow g(f(a), b) = g(f(c), a)$

is T_E -valid.

Decidability of T_E II

Suppose not; then there exists a $T_{\rm E}$ -interpretation I such that $I \not\models F$. Then,

1.
$$I \not\models F$$

2. $I \not\models a = b \land b = c$
3. $I \not\not\models g(f(a), b) = g(f(c), a)$
4. $I \not\models a = b$
5. $I \not\models b = c$
6. $I \not\models a = c$
7. $I \not\models f(a) = f(c)$
8. $I \not\models b = a$
9. $I \not\models g(f(a), b) = g(f(c), a)$
10. $I \not\models \bot$

F is $T_{\rm E}$ -valid.

assumption

- 1, \rightarrow
- 1, \rightarrow
- 2, ^
- 2, ^
- 4, 5, (transitivity)
- 6, (function)
- 4, (symmetry)
- 7, 8, (function)
- 3, 9 contradictory

Motivation

Prove the equivalences of these two programs

int power3(int in) { int i, out_a; out_a = in; for (i = 0; i < 2; i++)out_a = out_a * in; return out_a; } (a)

In general undecidable, here bounded loops.

```
int power3_new(int in) {
int out_b;
   out_b = (in * in) * in;
   return out_b; }
```

(b)

Equivalence of programs a and b

- A key observation, only bounded loops, Possible to compute their input/output relations
- Steps for i/o relation.
 - Remove the
 - Unroll the fo
 - Replace the
 - Read (referr
 - Conjoin all p

 $out0_a = in$ \wedge $out1_a = out0_a * in \land$ $out2_a = out1_a * in$

 $(arphi_a)$

 $out0_b = (in*in)*in;$ (φ_b)

Equivalence check

Replace some functions with "Uninterpreted" functions

 $out0_a = in$ \wedge $out1_a = G(out0_a, in) \land$ $out2_a = G(out1_a, in)$

 $(\varphi_a^{\mathrm{UF}})$

$$\varphi_a^{\mathrm{UF}} \wedge \varphi_b^{\mathrm{UF}} \Longrightarrow out_a^{\mathrm{UF}}$$

$\varphi_a \wedge \varphi_b \implies out2_a = out0_b$.

 $out0_b = G(G(in, in), in)$

 $(\varphi_b^{\mathrm{UF}})$

 $2_a = out0_b$.

Natural Numbers and Integers

Natural numbers $\mathbb{N} = \{0, 1, 2, \cdots$ $\mathbb{Z} = \{\cdots, -2, -2\}$ Integers

Three variations:

- \triangleright Peano arithmetic T_{PA} : natural numbers with addition, multiplication, =
- ▶ Presburger arithmetic $T_{\mathbb{N}}$: natural numbers with addition, =
- ▶ Theory of integers $T_{\mathbb{Z}}$: integers with +, -, >, =,multiplication by constants

$$\} \\ \cdot 1, 0, 1, 2, \cdots \}$$

 Σ_{PA} : {0, 1, +, ·, =}

Equality Axioms: (reflexivity), (symmetry), (transitivity), (function) for +, (function) for \cdot .

And the axioms:

1. $\forall x. \neg (x + 1 = 0)$ 2. $\forall x, y, x + 1 = y + 1 \rightarrow x = y$ 3. $F[0] \land (\forall x. F[x] \rightarrow F[x+1]) \rightarrow \forall x. F[x]$ 4. $\forall x. x + 0 = x$ 5. $\forall x, y. x + (y + 1) = (x + y) + 1$ 6. $\forall x. x \cdot 0 = 0$ 7. $\forall x, y. x \cdot (y+1) = x \cdot y + x$ Line 3 is an axiom schema.

(zero) (successor) (induction) (plus zero) (plus successor) (times zero) (times successor)

Example: 3x + 5 = 2y can be written using Σ_{PA} as

x + x + x + 1 + 1 + 1

Note: we have > and \ge since 3x + 5 > 2y write as $\exists z. z$ $3x + 5 \ge 2y$ write as $\exists z. 3$

Example:

Existence of pythagorean triples (F is T_{PA} -valid): $F: \exists x, y, z. \ x \neq 0 \land y \neq 0 \land z \neq 0 \land x \cdot x + y \cdot y = z \cdot z$

$$+1+1 = y + y$$

$$z \neq 0 \land 3x + 5 = 2y + z$$
$$3x + 5 = 2y + z$$

Decidability of Peano Arithmetic

 T_{PA} is undecidable. (Gödel, Turing, Post, Church) The quantifier-free fragment of T_{PA} is undecidable. (Matiyasevich, 1970)

Remark: Gödel's first incompleteness theorem Peano arithmetic T_{PA} does not capture true arithmetic: There exist closed Σ_{PA} -formulae representing valid propositions of number theory that are not T_{PA} -valid. The reason: T_{PA} actually admits *nonstandard interpretations*.

For decidability: no multiplication

Signature $\Sigma_{\mathbb{N}}:\ \{0,\ 1,\ +,\ =\}$

Axioms of $T_{\mathbb{N}}$ (equality axioms, with 1-5): 1. $\forall x. \neg (x + 1 = 0)$ 2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ 3. $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$ 4. $\forall x. x + 0 = x$ 5. $\forall x, y. x + (y + 1) = (x + y) + 1$

Line 3 is an axiom schema.

 $T_{\mathbb{N}}$ -satisfiability (and thus $T_{\mathbb{N}}$ -validity) is decidable (Presburger, 1929)

3. Theory of Integers $T_{\mathbb{Z}}$

Signature:

 $\Sigma_{\mathbb{Z}}$: {..., -2, -1, 0, 1, 2, ..., -3, -2, 2, 3, ..., +, -, >, =}

where

 \blacktriangleright ..., -2, -1, 0, 1, 2, ... are constants \blacktriangleright ..., $-3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \ldots$ are unary functions (intended meaning: $2 \cdot x$ is x + x, $-3 \cdot x$ is -x - x - x) \triangleright +, -, >, = have the usual meanings.

Relation between $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$:

 $T_{\mathbb{Z}}$ and $T_{\mathbb{N}}$ have the same expressiveness:

For every $\Sigma_{\mathbb{Z}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula.

For every $\Sigma_{\mathbb{N}}$ -formula there is an equisatisfiable $\Sigma_{\mathbb{Z}}$ -formula.

 $\Sigma_{\mathbb{Z}}$ -formula F and $\Sigma_{\mathbb{N}}$ -formula G are equisatisfiable iff:

F is $T_{\mathbb{Z}}$ -satisfiable iff *G* is $T_{\mathbb{N}}$ -satisfiable

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula | Example: consider the $\Sigma_{\mathbb{Z}}$ -formula

 $F_0: \forall w, x. \exists y, z. x + 2y - z - 7 > -3w + 4.$

Introduce two variables, v_p and v_n (range over the nonnegative integers) for each variable v (range over the integers) of F_0 :

$$F_1: \quad \begin{array}{l} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ (x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 7 > -3(w_p - w_n) + 4 \end{array}$$

Eliminate — by moving to the other side of >:

$$F_2: \quad \begin{array}{l} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, \\ x_p + 2y_p + z_n + 3w_p > 2 \end{array}$$

 Z_n . $x_n + 2y_n + z_p + 7 + 3w_n + 4$

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula II Eliminate > and numbers: $\forall w_p, w_n, x_p, x_n$. $\exists y_p, y_n, z_p, z_n$. $\exists u$.

F₃ :

which is a $\Sigma_{\mathbb{N}}$ -formula equisatisfiable to F_0 .

- To decide $T_{\mathbb{Z}}$ -validity for a $\Sigma_{\mathbb{Z}}$ -formula F:
 - \triangleright transform $\neg F$ to an equisatisfiable $\Sigma_{\mathbb{N}}$ -formula $\neg G$,
 - ▶ decide $T_{\mathbb{N}}$ -validity of G.

 $egl(u = 0) \land x_p + y_p + y_p + z_n + w_p + w_p + w_p$ = $x_n + y_n + y_n + z_p + w_n + w_n + w_n + u$ +1+1+1+1+1+1+1+1+1+1+1

$\Sigma_{\mathbb{Z}}$ -formula to $\Sigma_{\mathbb{N}}$ -formula III Example: The $\Sigma_{\mathbb{N}}$ -formula

 $\forall x. \exists y. x = y + 1$

is equisatisfiable to the $\Sigma_{\mathbb{Z}}$ -formula:

 $\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1.$

Rationals and Reals

Signatures:

▶ Theory of Reals $T_{\mathbb{R}}$ (with multiplication)

$$x \cdot x = 2 \quad \Rightarrow$$

• Theory of Rationals $T_{\mathbb{Q}}$ (no multiplication)

$$\underbrace{\frac{2x}{x+x}}_{x+x} = 7 \qquad \Rightarrow \qquad$$

<u>Note</u>: strict inequality okay; simply rewrite

x + y > z

as follows:

$$\neg(x+y=z)$$

$=, \geq$

- - $x = \pm \sqrt{2}$
- $\Rightarrow x = \frac{7}{2}$

- $\wedge x + y \geq z$

1. Theory of Reals $T_{\mathbb{R}}$ Signature: $\Sigma_{\mathbb{R}}$: {0, 1, +, -, with multiplication. Axioms in text. <u>Example</u>:

 $\forall a, b, c. \ b^2 - 4ac \geq 0 \ \leftrightarrow \ \exists$

is $T_{\mathbb{R}}$ -valid.

 $T_{\mathbb{R}}$ is decidable (Tarski, 1930) High time complexity

$$, \cdot, =, \geq \}$$

$$\exists x. ax^2 + bx + c = 0$$

Recursive Data Structures (RDS) I

Tuples of variables where the elements can be instances of the same structure: e.g., linked lists or trees.

1. Theory T_{cons} (LISP-like lists)

Signature:

 Σ_{cons} : {cons, car, cdr, atom, =}

where

cons(a, b) – list constructed by concatenating a and b car(x) - left projector of x: car(cons(a, b)) = acdr(x) - right projector of x: cdr(cons(a, b)) = batom(x) - true iff x is a single-element list

<u>Note</u>: an atom is simply something that is not a cons. In this formulation, there is no NIL value.

Recursive Data Structures (RDS) II Axioms:

- 1. The axioms of reflexivity, symmetry, and transitivity of =
- 2. Function Congruence axioms

$$\forall x_1, x_2, y_1, y_2. x_1 = x_2 \land y_1 = y_2 \rightarrow \text{cor}$$

 $\forall x, y. x = y \rightarrow \text{car}(x) = \text{car}(y)$
 $\forall x, y. x = y \rightarrow \text{cdr}(x) = \text{cdr}(y)$

3. Predicate Congruence axiom

$$\forall x, y. \ x = y \ \rightarrow \ (\operatorname{atom}(x) \ \leftrightarrow$$

4.
$$\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$$

5. $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$
6. $\forall x. \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) =$
7. $\forall x, y. \neg \operatorname{atom}(\operatorname{cons}(x, y))$

Note: the behavior of car and cons on atoms is not specified

 $ns(x_1, y_1) = cons(x_2, y_2)$

 $T_{\rm cons}$ is undecidable Quantifier-free fragment of T_{cons} is efficiently decidable

(left projection) (right projection) (construction) = X (atom)

Lists with equality

2. Theory T_{cons}^{E} (lists with equality) $T_{\rm cons}^E = T_{\rm E} \cup T_{\rm cons}$ Signature:

 $\Sigma_{E} \cup \Sigma_{cons}$

(this includes uninterpreted constants, functions, and predicates)

<u>Axioms</u>: union of the axioms of T_E and T_{cons}

 $T_{\rm cons}^{E}$ is undecidable Quantifier-free fragment of T_{cons}^E is efficiently decidable

Example: The Σ_{cons}^{E} -formula

$$F: \quad \begin{array}{l} \operatorname{car}(x) = \operatorname{car}(y) \wedge \operatorname{cdr}(x) = \operatorname{cdr}(y) \\ \rightarrow f(x) = f(y) \end{array}$$

 $\land \neg \mathsf{atom}(x) \land \neg \mathsf{atom}(y)$

Suppose not; then there exists a T_{cons}^E -interpretation I such that $I \not\models F$. Then,

Lines 6 and 11 are contradictory, so our assumption that $I \not\models F$ must be wrong. Therefore, F is T_{cons}^E -valid.

mption

 \rightarrow , \wedge ightarrow , ightarrowightarrow , ightarrow \rightarrow , \wedge \rightarrow

), $\operatorname{cdr}(y)$) (function)

```
onstruction)
```

```
onstruction)
```

```
9, (transitivity)
```

function)

First-Order Theories

Theory			
Equality			
Peano Arithmetic			
Presburger Arithmetic			
Linear Integer Arithmet			
Real Arithmetic			
Linear Rationals			
Lists			
Lists with Equality			

Demo CVC5

Input Format: SMT-LIB 2

https://cvc5.github.io/

First, directives. E.g., asking models to be reported:

(set-option :produce-models true)

Second, set background theory:

(set-logic QF_LIA)

Standard theories of interest to us:

- QF_LRA : quantifier-free linear real arithmetic
- QF_LIA : quantifier-free linear integer arithmetic
- QF_RDL : quantifier-free real difference logic
- QF_IDL : quantifier-free integer difference logic

SMT-LIB 2 does not allow to have mixed problems (although some solvers support it outside the standard)