CS57335 Program Synthesis

#7.FOL

Ashish Mishra, August 20, 2024

Partly based on slides by Roopsha Samata at Purdue

Roadmap

®* Previously
* PL
* SAT Solving

® Today
®* Syntax and Semantics of first order logic (FOL)

®* Semantic argument method for FOL validity
®* Properties of FOL

Pr itional Logi
opositional Logic First-Order Logic

(predicate logic/predicate calculus/
relational logic)

PAQ - PV =0

Vx.p(x,y) = 3y.~q(x,y)

Term
Syntax Of FOL constant, variable, or,

n-ary function applied to n terms

- a,b,c Atom
- XV, Z T,1,or,
- 1,9,h n-ary predicate applied to n terms
. p,q,Tr
Literal

VA o o atom or Its negation

T FOL formula:

Literal, or, application of logical
connectives to an FOL formula, or,

application of a quantifier to an FOL
formula

Quantifiers

existential quantifier: Ix. F(x)

universal quantifier: Vx.F(x)

“there exists an x such that F(x)”
“for all x, F(x)”

Quantified variable Scope of quantified variable

A variable is bound if there exists an
occurrence in the scope of some quantifier

A variable is free if there exists an
occurrence not bound by any quantifier

A variable may be both bound and free!

In a given formula

Closed/Ground formula:
no free variables

Open formula: some free variables

Ground, quantifier-free formula:
no variables

Example

Vx. p(f(x),x) — (3y. p(f(g(x,y)),8(x,¥))) A a(x,f(x))

G
-—_

F

The scope of Vx is F.
The scope of dy is G.
The formula reads:
“for all x,
if p(f(x),x)
then there exists a y such that

p(f(g(x,y)),g(x,y)) and q(x, f(x))"

English to FOL

» The length of one side of a triangle is less than the sum of the
lengths of the other two sides

Vx,y,z. triangle(x, y,z) — length(x) < length(y)-+length(z)

no three positive itegers x, y, and z satisty the equation x” +
y® = zn for any integer value of n greater than 2.

» Fermat's Last Theorem.

Vn. integer(n) A n > 2
— VX,Vy,Z.
integer(x) A integer(y) A integer(z)
AX>0ANy>0AN2z>0
— Xn _I_ yn # Zn

https://en.wikipedia.org/wiki/Positive_number
https://en.wikipedia.org/wiki/Integer

FOL Semantics

An interpretation / : (D, «;) consists of:

» Domain D;
non-empty set of values or objects
cardinality |D;| finite (eg, 52 cards),
countably infinite (eg, integers), or
uncountably infinite (eg, reals)

» Assignment o

» each variable x assigned value x; € D,
» each n-ary function f assigned

f/i Dln—>D/

In particular, each constant a (0-ary function) assigned value
a; € D,
» each n-ary predicate p assigned

p; : D' — {true, false}

In particular, each propositional variable P (0-ary predicate) assigned truth value (true, false)

Interpretation / : (Dy, ay)
Dj=7={--,-2-10,1,2,---} integers
ay . {f}_) +,8 —,P*—>>}

Therefore, we can write

Fl ' x+y>z - y>z—x

(This is the way we'll write it in the future!)
Also
a:{x+— 13,y — 42,z — 1}
Thus
Fj:13+42>1 — 42>1-13

Compute the truth value of F under [/

1. | = x4+y>z since 13 +42 > 1
2. | = y>z—x since 42 > 1 — 13
3. | = F by 1, 2, and —

Example F: o(f(x,y).2) - ply.g(z,%))

F i1s true under /

Semantics: Quantifiers

x variable.
x-variant of interpretation / is an interpretation J: (D, a) such
that

> D/ — DJ

» «aly] = ayly] for all symbols y, except possibly x

That is, | and J agree on everything except possibly the value of x

Denote J: | <{x +— v} the x-variant of / in which a [x] = v for
some v € D;. Then

» | = Vx. F iffforallve D), I <{x— v} = F
» | = dx. Fiffthereexistsve D;st. [a{x—vVv} = F

| Is an interpretation of Vx. F iff all x-variants of | are interpre-
tations of F . | is an interpretation of dx. F iff some x-variant of | is an

interpretation of F .

Example

For QQ, the set of rational numbers, consider

F;:Vx.dy.2Xxy=x

Compute the value of F; (F under /):

Let
J1: 1 a{x— v} S h<{y — 3}
x-variant of / y-variant of J;

for v e Q.

Then

1. L = 2Xy=x since 2 X 5 = v

2. 1 = dy.2xy=x

3 | E Vx.dy.2xy=x since v € QQ is arbitrary

Satisfiability and Validity

F is satisfiable iff there exists [s.t. |/
F isvalid iff forall I, | = F

|
M

F is valid iff =F i1s unsatisfiable

Semantic rules: given an interpretation / with domain Dy,

| =Vx. Fx]
[<{x+— v} = F|[x]

for any v € D,

| = Vx. F[x]
for a fresh v € Dy
[a{x— v} E F[x]
| = dx. F|x]
for a fresh v € Dy
[<{x+— v} E F[x]
[P~ 3dx. F[x]

for any v € D

[<{x+— v} = F[x]

Contradiction rule

A contradiction exists if two variants of the original interpretation /
disagree on the truth value of an n-ary predicate p for a given
tuple of domain values:

JI/<]"':P(51a-°°75n)
K:la--- = p(t,...,tn) forie{l,...,n}, ayls;] = aklti]
[=1

Intuition: The variants J and K are constructed only through the
rules for quantification. Hence, the truth value of p on the given
tuple of domain values is already established by /. Therefore, the
disagreement between J and K on the truth value of p indicates a

problem with /.

Examples

Example: F: (Vx. p(x)) < (—3x. =p(x)) valid?

Suppose not. Then there is [s.t.

0. I (Yx p(x)) < (—3x. =p(x))
First case

1. | = Vx. p(x) assumption

2. | ¥~ —dx. =p(x) assumption

3. | = dx. —p(x) 2 and —

4. Ia{x—v} E —p(x) 3 and 4, for some v € D,
5. Ia{x—v} E p(x) 1 and V

4 and 5 are contradictory.

Second case

1. | ¥~ Vx. p(x) assumption

2. | = —dx. —p(x) assumption

3. I<a{x—v} ¥ p(x) 1 and V, for some v € D,
4. | ¥ dx. = p(x) 2 and —

5. Ia{x—v} ¥ —p(x) 4 and =

6. I<{x—v} E px) 5 and —

3 and 6 are contradictory.
Both cases end in contradictions for arbitrary I = F is valid.

Example: Prove

F: p(a) — dx. p(x) s valid.

Assume otherwise.

1. I # F assumption
2. / p(a) l1and —
3. I ¥~ dx. p(x) l1and —
4. | a{x— la]} FE p(x) 3 and =

2 and 4 are contradictory. Thus, F is valid.

Example: Show To prove F is invalid,

F: (Vx. p(x, — (dx. Vy. p(x, is invalid.
(¥x. p(x:x)) (v p.y)) justfindanl. | E —F

Find interpretation / such that

I = -[(Vx. p(x,x)) — (3x. Vy. p(x,y))]

1.e.

I E (Vx. p(x,x)) A =(3x. Yy. p(x,y))

Choose D; ={0,1}

p; = {(0,0), (1,1)} i.e. ps(0,0) and p;(1,1) are true
p;(1,0) and p;(1,0) are false

| falsifying interpretation = F is invalid.

Substitution

Suppose we want to replace one term with another in a formula;
e.g., we want to rewrite

F: Vy. (p(x,y) — p(y,x))

as follows:
G: Vy. (p(a,y) — ply,a)).

We call the mapping from x to a a substitution denoted as
o:{x+— a}.
We write Fo for the formula G.

Another convenient notation is F|[x] for a formula containing the
variable x and F|a| for Fo.

Substitution

Definition (Substitution)

A substitution is a mapping from terms to terms; e.g.,

og:{ti1— S,...,th — Sy}

By Fo we denote the application of o to formula F;
l.e., the formula F where all occurrences of t1, ..., t, are
replaced by sq,...,s,.

For a formula named F[x]| we write F[t| as shorthand for
Fx|{x +— t}.

Scope and Renaming

Replace x in Vx by x’ and all free occurrences! of x in G[x], the

scope of Vx, by x':
Vx. G[x] & VX. G[X].

Same for dx:
dx. G[x] <& 3. G[X],

where x’ is a fresh variable.

Example (renaming):

(Vx. p(x) — 3x. q(x)) A r(x)
T Vx T dx T free

replace by the equivalent formula

(Vy. p(y) — 3z.q(z)) A r(x)

scope of vx

—
F:(Yx. plxy)) — a(f(y), x)

bound by Vx ~~ "\ free

free(F) = {x, y}

free / \ free

Safe Substitution |

Care has to be taken in the presence of quantifiers:

F[x] : dy. y = Succ(x)
T free

What is F[y]? Variable Capture

We need to rename bound variables occurring in the substitution:

Flx] : 3y’. y' = Succ(x)

Bound variable renaming does not change the models of a formula:

(Jy. y = Succ(x)) & (Fy'. y' = Suce(x))

Then under safe substitution

Flyl : 3y'. v/ = Succ(y)

Safe Substitution ||

Example: Consider the following formula and substitution:

F:(Vx. p(x,y)) — q(f(y), x) o:{z—g(z), y— f(), ¢(f(y),z) — Jz. h(z,y)}
T freel

Note that the only bound variable in F is the x in p(x,y). The
variables x and y are free everywhere else.

What i1s Fo?7 Use safe substitution!

1. Rename the bound x with a fresh name x’:
F'o (WX p(X,y)) — a(f(y),x)

2. Fo: (VX' p(x',f(x))) — q(h(x,y),g(x))

Safe Substitution ||

Proposition (Substitution of Equivalent Formulae)

og:{Fi1— Gy, ---, F— G}
s.t. foreach i, F; & G;

If Fo iIs a safe substitution, then F & Fo.

Formula Schema

Formula
(Vx. p(x)) < (=3x. =p(x)) We proved the validity of this earlier

Formula Schema
H; : (Vx. F) < (—3dx. =F)
I'place holder

Formula Schema (with side condition)
H, : (Vx. F) < F provided x & free(F)

Valid Formula Schema

H is valid iff valid for any FOL formula F; obeying the side
conditions

Example: H; and H> are valid.

Substitution o of H

og:{FL— Gi,...,F,— G,}

mapping place holders F; of H to FOL formulae G;,
obeying the side conditions of H

Proposition (Formula Schema)

If H is a valid formula schema, and
o 1s a substitution obeying H's side conditions,
then Ho is also valid.

Example:
H:(Vx. F) « F provided x ¢ free(F) is valid.
o:{F+— p(y)} obeys the side condition.

Therefore Ho : Vx. p(y) < p(y) is valid.

Proving Validity of Formula Schemata |

Example: Prove validity of

H: (Vx. F) < F provided x ¢ free(F).

Proof by contradiction. Consider the two directions of « .

» First case

1. | = Vx. F assumption

2. | ¥~ F assumption

3. 1 = F 1, V, since x ¢ free(F)
4. | E L 2, 3

Proving Validity of Formula Schemata ||

» Second Case

1. I ¥ Vx. F assumption

2. | = assumption

3. I = dx.-F 1 and -

4. | = ~F 3, d, since x ¢ free(F)
5. | E L 2, 4

Hence, H is a valid formula schema.

Normal forms are for FOL as well

1. Negation Normal Forms (NNF)
Augment the equivalence with (left-to-right)

—Vx. Flx] < 3x. =F[x] Schema equivalences

—dx. F[x] & Vx. =F[x]

Example

G: Vx. (3y. p(x,y) AN p(x,z)) — dw.p(x,w) .

1. Vx. (dy. p(x,y) A p(x,z)) — dw. p(x,w)
2. Vx. =(Jy. p(x,y) A p(x,z)) V dw. p(x,w)

Fh - Fh & - F V F
3. Vx. (Vy. =(p(x,y) N p(x,z))) V Iw. p(x,w)

-dx. F[x] & Vx. —F[x]
4. Vx. (Vy. =p(x,y) V —p(x,z)) V Jw. p(x,w)

2. Prenex Normal Form (PNF)

All quantifiers appear at the beginning of the formula

lel ann° F[X17°'° 7Xn]

where Q; € {V, 3} and F is quantifier-free.

Every FOL formula F can be transformed to formula F’ in PNF
s.t. F/ & F.

» Write F in NNF,
» rename quantified variables to fresh names, and

» move all quantifiers to the front. Be careful!

Example: Find equivalent PNF of

F: Vx. =(3y. p(x,y) A p(x,2)) V Jy. p(x,y)
I to the end of the formula

1. Write F in NNF

Fi: Vx. (Vy. =p(x,y) V =p(x,2)) V Jy. p(x,y)

2. Rename quantified variables to fresh names

Fa: Vx. (Vy. =p(x,y) V —p(x,2)) V Iw. p(x, w)
TBoth are in the scope of Vx!

3. Remove all quantifiers to produce quantifier-free formula

Fs: —p(x,y)V -p(x,z)V p(x,w)

4. Add the quantifiers before F3
Fq: Vx.Vy. dw. =p(x,y)V —p(x,z) V p(x, w)
Alternately,

F,: Vx. 3w. Vy. =p(x,y) V —p(x,2) V p(x, w)

Note: In F>, Vy is in the scope of Vx, therefore the order of
quantifiers must be - - -Vx---Vy---.
Also, dw is in the scope of Vx, therefore the order of the

—

quantifiers must be ---Vx---dw - --

F, & Fand F, & F

Note: However, possibly, G ¢ F and G’ < F, for

G : Vy. dw. Vx. =p(x,y) V —p(x,z) V p(x, w)
G :

L1

w. Vx. Vy. - .

Some meta properties of
FOL

Soundness and Completeness of Proof Rules

Semantic Argument Proof

To show FOL formula F is valid, assume | %= F and derive a
contradiction / = _L in all branches

» Soundness
If every branch of a semantic argument proof reach | = 1,
then F is valid

» Completeness
Each valid formula F has a semantic argument proof in which
every branch reach | = L

(Un)Decidability of FOL

A problem is decidable if there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and

2. halts and says “no” if answer is negative
(Such a procedure is called an algorithm or a decision procedure)

Undecidability of FOL [Church and Turing]: Church Turing
Deciding the validity of an FOL formula is undecidable rf
;T

Deciding the validity of a PL formula is decidable
The truth table method is a decision procedure

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input:
1. halts and says “yes” if answer is positive, and
2. may not terminate if answer is negative.

Semi-decidability of FOL:
For every valid FOL formula, there exists a procedure (semantic

argument method) that always terminates and says “yes”.
If an FOL formula is invalid, there exists no procedure that is

guaranteed to terminate.

Summary and Logistics

® Thanks for the submissions and sorry for the confusion.
®* No (compulsory) reading this week, will encourage reading CoC Text.

® Next Class, FO Theories and Satisfiability Modulo Theory (SMT) Solvers.

® Discuss the paper in the second half of the class.

