CS5733 Program Synthesis #7.FOL

Ashish Mishra, August 20, 2024

Partly based on slides by Roopsha Samata at Purdue

Roadmap

- Previously
	- PL
	- SAT Solving
- Today
	- Syntax and Semantics of first order logic (FOL)
	- Semantic argument method for FOL validity
	- Properties of FOL

Propositional Logic

$P \wedge Q \rightarrow P \vee \neg Q$

▶ Simple, not very expressive

Decidable

Automated reasoning about satisfiability/validity

First-Order Logic (predicate logic/predicate calculus/ relational logic)

$\forall x. p(x, y) \rightarrow \exists y. \neg q(x, y)$

Very expressive ▶ Semi-decidable ▶ Not fully automated

Syntax of FOL

constants: a, b, c variables: x, y, z *n*-ary functions: f, g, h n -ary predicates: p, q, r

logical connectives: $\neg, V, \Lambda, \rightarrow, \leftrightarrow$ quantifiers: 3, V

```
Term
constant, variable, or,
n-ary function applied to n terms
```

```
Atom
T, \perp, orn-ary predicate applied to n terms
```

```
Literal
atom or its negation
```

```
FOL formula:
```
Literal, or, application of logical connectives to an FOL formula, or, application of a quantifier to an FOL formula

Quantifiers

existential quantifier: $\exists x. F(x)$ universal quantifier: $\forall x. F(x)$

Quantified variable

A variable is bound if there exists an occurrence in the scope of some quantifier

A variable is free if there exists an occurrence not bound by any quantifier

A variable may be both bound and free! In a given formula "there exists an x such that $F(x)$ " "for all x, $F(x)$ "

Scope of quantified variable

Closed/Ground formula: no free variables

Open formula: some free variables

Ground, quantifier-free formula: no variables

Example

The scope of $\forall x$ is F. The scope of $\exists y$ is G. The formula reads: "for all x , if $p(f(x),x)$ then there exists a y such that $p(f(g(x, y)), g(x, y))$ and $q(x, f(x))$ "

English to FOL

 \blacktriangleright The length of one side of a triangle is less than the sum of the lengths of the other two sides

 $\forall x, y, z.$ triangle $(x, y, z) \rightarrow$ let

 \blacktriangleright Fermat's Last Theorem.

 $\forall n.$ integer(n) \wedge n > 2 $\rightarrow \forall x, y, z.$ $integer(x) \wedge inte$ $\wedge x > 0 \wedge y >$ \rightarrow $x^{n} + y^{n} \neq$

$$
\mathit{ngth}(x) < \mathit{length}(y) + \mathit{length}(z)
$$

no three <u>positive integers</u> x, y, and z satisfy the equation x^n + $y^n = z^n$ for any integer value of *n* greater than 2.

$$
eger(y) \wedge integer(z)
$$

\n $0 \wedge z > 0$
\n z^n

FOL Semantics

An interpretation $I: (D_1, \alpha_1)$ consists of:

 \triangleright Domain D_1 non-empty set of values or objects cardinality $|D_I|$ finite (eg, 52 cards), countably infinite (eg, integers), or uncountably infinite (eg, reals)

Assignment α_1

- each variable x assigned value $x_1 \in D_1$
- rach n-ary function f assigned

 $f_I: D_I^n \to D_I$

In particular, each constant a (0-ary function) assigned value $a_I \in D_I$

reach n-ary predicate p assigned

 $p_1: D_1^n \rightarrow \{true, false\}$

In particular, each propositional variable P (0-ary predicate) assigned truth value (true, false)

Example $F: p(f(x,y),z) \rightarrow p(y,g(z,x))$

Interpretation $I: (D_I, \alpha_I)$ $D_1 = \mathbb{Z} = {\dots, -2, -1, 0, 1, 2, \dots}$ integers $\alpha_1: \{f \mapsto +, g \mapsto -, p \mapsto \}$ Therefore, we can write

$$
F_1: x+y > z \rightarrow y > z-x
$$

(This is the way we'll write it in the future!) Also

$$
\alpha_1: \{x \mapsto 13, y \mapsto 42, z \mapsto 1\}
$$

Thus

 $F_1: 13 + 42 > 1 \rightarrow 42 > 1 - 13$

Compute the truth value of F under I

1.
$$
I \models x + y > z
$$
 since 1

2.
$$
I \models y > z - x
$$
 since 4.

$$
3. \quad I \quad \models \quad F \qquad \qquad \text{by 1, 2}
$$

 $13+42>1$ $42 > 1 - 13$?, and \rightarrow

F is true under I

Semantics: Quantifiers

 x variable.

x-variant of interpretation *l* is an interpretation $J: (D_J, \alpha_J)$ such that

 \blacktriangleright $D_1 = D_1$ \bullet α _I[y] = α _J[y] for all symbols y, except possibly x That is, I and J agree on everything except possibly the value of x

Denote $J: I \triangleleft \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_1$. Then

 \blacktriangleright $I \models \forall x. F$ iff for all $v \in D_I$, \blacktriangleright $I \models \exists x. F$ iff there exists $v \in$

I is an interpretation of ∀x. F iff all x-variants of I are interpretations of F . I is an interpretation of ∃x. F iff some x-variant of I is an interpretation of F .

-
-
-

$$
1 \triangleleft \{ x \mapsto v \} \models F
$$

= D_1 s.t. $1 \triangleleft \{ x \mapsto v \} \models F$

-
-

Example For Q , the set of rational numbers, consider F_1 : $\forall x. \exists y. 2$ Compute the value of F_I (F under I): Let $J_1: I \triangleleft \{x \mapsto v\}$ x -variant of I for $v \in \mathbb{Q}$. Then 1. J_2 = 2 × y = x
2. J_1 = 3y. 2 × y = x

 \models ∀x. ∃y. 2 × y = x since v ∈ Q is arbitrary 3.

$$
\times y = x
$$

$$
J_2: J_1 \triangleleft \{ y \mapsto \frac{v}{2} \}
$$

y-variant of J_1

since
$$
2 \times \frac{v}{2} = v
$$

Satisfiability and Validity

Semantic rules: given an interpretation *I* with domain D_I ,

$$
\frac{1 \models \forall x. F[x]}{1 \triangleleft \{x \mapsto v\} \models F[x]} \text{ for any } v \in D_I
$$
\n
$$
\frac{1 \not\models \forall x. F[x]}{1 \triangleleft \{x \mapsto v\} \not\models F[x]} \text{ for a fresh } v \in D_I
$$
\n
$$
\frac{1 \models \exists x. F[x]}{1 \triangleleft \{x \mapsto v\} \models F[x]} \text{ for a fresh } v \in D_I
$$
\n
$$
\frac{1 \not\models \exists x. F[x]}{1 \triangleleft \{x \mapsto v\} \not\models F[x]} \text{ for any } v \in D_I
$$

Same as PL

F is satisfiable iff there exists I s.t. $I \models F$ F is valid iff for all $I, I \models F$

F is valid iff $\neg F$ is unsatisfiable

Contradiction rule

A contradiction exists if two variants of the original interpretation / disagree on the truth value of an n -ary predicate p for a given tuple of domain values:

$$
J: I \triangleleft \cdots \models p(s_1, \ldots, s_n)
$$

$$
K: I \triangleleft \cdots \not\models p(t_1, \ldots, t_n) \quad \text{for } i \in \{1, \ldots, n\}, \alpha_J[s_i] = \alpha_K[t_i]
$$

$$
I \models \bot
$$

Intuition: The variants J and K are constructed only through the rules for quantification. Hence, the truth value of p on the given tuple of domain values is already established by *I*. Therefore, the disagreement between J and K on the truth value of p indicates a problem with *I*.

Examples

Example: $F: (\forall x. p(x)) \leftrightarrow (-$ Suppose not. Then there is / s.t. 0. $I \not\models (\forall x. p(x)) \leftrightarrow$ First case

1.

1 $\downarrow \uparrow \uparrow \downarrow \qquad \neg \exists x. \neg p(x)$

3.

1 $\downarrow \uparrow \neg \exists x. \neg p(x)$

4. $1 \triangleleft \{ x \mapsto v \} \uparrow \neg p(x)$

5. $1 \triangleleft \{ x \mapsto v \} \uparrow \neg p(x)$
 $p(x)$

4 and 5 are contradictory.

$$
\neg \exists x. \neg p(x))
$$
 valid?

$$
(\neg \exists x. \neg p(x))
$$

assumption

\nassumption

\n2 and
$$
\neg
$$

\n3 and \exists , for some $v \in D_I$

\n1 and \forall

Second case

3 and 6 are contradictory. Both cases end in contradictions for arbitrary $I \Rightarrow F$ is valid.

5 and \neg

Example: Prove $F: p(a) \rightarrow \exists x. p(x)$ is valid.

Assume otherwise.

1.
\n1
\n2.
\n1
\n2.
\n3.
\n4.
\n
$$
1 \Leftrightarrow F
$$
\n4.
\n
$$
1 \Leftrightarrow \beta(a)
$$
\n5.
\n
$$
1 \Leftrightarrow \beta(x)
$$
\n6.
\n
$$
1 \Leftrightarrow \beta(x)
$$

2 and 4 are contradictory. Thus, F is valid.

assumption 1 and \rightarrow $p(x)$ 1 and \rightarrow 3 and \exists

Example: Show
$F: (\forall x. p(x, x)) \rightarrow (\exists x. \forall y. p(x, y))$ is invalid
Find interpretation I such that
$I \models \neg[(\forall x. p(x, x)) \rightarrow (\exists x. \forall y. p(x, y))]$
i.e.
$I \models (\forall x. p(x, x)) \land \neg(\exists x. \forall y. p(x, y))$
Choose $D_I = \{0, 1\}$
$p_I = \{(0, 0), (1, 1)\}$ i.e. $p_I(0, 0)$ and $p_I(1, 1)$
$p_I(1, 0)$ and $p_I(1, 0)$

I falsifying interpretation \Rightarrow F is invalid.

d.

To prove F is invalid, just find an I. $I \models \neg F$

are true are false

Substitution

Suppose we want to replace one term with another in a formula; e.g., we want to rewrite

 $F: \forall y. (p(x, y))$

as follows:

 $G: \forall y. (p(a, y))$

We call the mapping from x to a a substitution denoted as

We write $F\sigma$ for the formula G.

Another convenient notation is $F[x]$ for a formula containing the variable x and $F[a]$ for $F\sigma$.

$$
y) \rightarrow p(y,x)
$$

$$
y) \rightarrow p(y,a).
$$

 $\sigma: \{x \mapsto a\}.$

Substitution

Definition (Substitution) A substitution is a mapping from terms to terms; e.g.,

 $\sigma: \{t_1 \mapsto s\}$

By $F\sigma$ we denote the application of σ to formula F; i.e., the formula F where all occurrences of t_1, \ldots, t_n are replaced by s_1, \ldots, s_n .

For a formula named $F[x]$ we write $F[t]$ as shorthand for $F[x]{x \mapsto t}.$

$$
s_1,\ldots,t_n\mapsto s_n\}.
$$

Scope and Renaming

Replace x in $\forall x$ by x' and all free occurrences¹ of x in $G[x]$, the scope of $\forall x$, by x' :

 $\forall x. G[x] \Leftrightarrow \forall x'. G[x'].$

Same for $\exists x$:

 $\exists x. G[x] \Leftrightarrow \exists x'. G[x'],$

where x' is a fresh variable.

Example (renaming):

$$
(\forall x. p(x) \rightarrow \exists x. q(x)) \wedge r(x)
$$

$$
\uparrow \forall x \qquad \uparrow \exists x \qquad \uparrow \text{free}
$$

replace by the equivalent formula

$$
(\forall y. p(y) \rightarrow \exists z. q(z)) \wedge r(x)
$$

 $free(F) = \{x, y\}$

Safe Substitution I

Care has to be taken in the presence of quantifiers: $F[x]: \exists y. y =$

What is $F[y]$? Variable Capture We need to rename bound variables occurring in the substitution: $F[x]: \exists y'. y'$

Bound variable renaming does not change the models of a formula:

$$
(\exists y. y = Succ(x)) \Leftrightarrow
$$

Then under safe substitution

 $F[y]$: $\exists y'. y' = Succ(y)$

$$
Succ(x)
$$

$$
\uparrow
$$
 free

$$
Succ(x)
$$

 \Rightarrow $(\exists y'. y' = Succ(x))$

Safe Substitution II Consider the following formula and substitution: Example:

Note that the only bound variable in F is the x in $p(x, y)$. The variables x and y are free everywhere else.

What is $F\sigma$? Use safe substitution!

1. Rename the bound x with a fresh name

$$
F':(\forall x'. p(x',y)) \rightarrow q
$$

2. $F\sigma$: $(\forall x'. p(x', f(x))) \rightarrow q(h(x, y), g(x))$

- $F: (\forall x. p(x,y)) \rightarrow q(f(y), x) \quad \sigma: \{x \mapsto g(x), y \mapsto f(x), q(f(y), x) \mapsto \exists x. h(x,y)\}\$ ↑ free $↑$
	-

$$
\mathsf{e}\; \mathsf{x}'
$$

 $q(f(y),x)$

Safe Substitution III Proposition (Substitution of Equivalent Formulae)

-
- s.t. for each *i*, $F_i \Leftrightarrow G_i$
- If $F\sigma$ is a safe substitution, then $F \Leftrightarrow F\sigma$.

$\sigma: \{F_1 \mapsto G_1, \cdots, F_n \mapsto G_n\}$

Formula Schema

Formula $(\forall x. p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$

Formula Schema $H_1: (\forall x. F) \leftrightarrow (\neg \exists x. \neg F)$ \uparrow place holder

Formula Schema (with side condition) H_2 : $(\forall x. \ F) \leftrightarrow F$ provided $x \notin free(F)$

Valid Formula Schema H is valid iff valid for any FOL formula F_i obeying the side conditions

Example: H_1 and H_2 are valid.

We proved the validity of this earlier

Substitution σ of H

 $\sigma: \{F_1 \mapsto G_1, \ldots, F_n \mapsto G_n\}$

mapping place holders F_i of H to FOL formulae G_i , obeying the side conditions of H

Proposition (Formula Schema) If H is a valid formula schema, and σ is a substitution obeying H's side conditions, then $H\sigma$ is also valid.

Example: $H: (\forall x. \ F) \leftrightarrow F$ provided $x \notin free(F)$ is valid. $\sigma: \{F \mapsto p(y)\}$ obeys the side condition.

Therefore $H\sigma : \forall x. p(y) \leftrightarrow p(y)$

-
-

-
- is valid.

Proving Validity of Formula Schemata I Example: Prove validity of $H: (\forall x. F) \leftrightarrow F$ provided $x \notin free(F)$.

Proof by contradiction. Consider the two directions of \leftrightarrow . \blacktriangleright First case

1.
$$
I \models \forall x. F
$$

\n2. $I \not\models F$
\n3. $I \models F$
\n4. $I \models \bot$

-
-
- assumption assumption 1, \forall , since $x \notin$ free(F) $2, 3$

Proving Validity of Formula Schemata II \blacktriangleright Second Case

Hence, H is a valid formula schema.

Normal forms are for FOL as well

1. Negation Normal Forms (NNF)

Augment the equivalence with (left-to-right)

 $\neg \forall x. F[x] \Leftrightarrow \exists x. \neg F[x]$ $\neg \exists x. F[x] \Leftrightarrow \forall x. \neg F[x]$

Example

 $G: \forall x. (\exists y. p(x,y) \land p(x,z)) \rightarrow \exists w. p(x,w)$. 1. $\forall x. (\exists y. p(x,y) \land p(x,z)) \rightarrow \exists w. p(x,w)$ 2. $\forall x. \neg (\exists y. p(x,y) \land p(x,z)) \lor \exists w. p(x,w)$ 3. $\forall x. (\forall y. \neg(p(x,y) \land p(x,z))) \lor \exists w. p(x,w)$ 4. $\forall x. (\forall y. \neg p(x,y) \lor \neg p(x,z)) \lor \exists w. p(x,w)$

Schema equivalences

-
- $F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \vee F_2$ $\neg \exists x. F[x] \Leftrightarrow \forall x. \neg F[x]$

2. Prenex Normal Form (PNF) All quantifiers appear at the beginning of the formula $Q_1x_1\cdots Q_nx_n$. $F[x_1,\cdots,x_n]$ where $Q_i \in \{ \forall, \exists \}$ and F is quantifier-free.

Every FOL formula F can be transformed to formula F' in PNF s.t. $F' \Leftrightarrow F$.

 \triangleright Write F in NNF,

 \blacktriangleright rename quantified variables to fresh names, and \triangleright move all quantifiers to the front. Be careful!

Find equivalent PNF of Example:

$$
F: \forall x. \neg (\exists y. p(x,y) \land p(x,z)) \lor
$$

$$
\uparrow
$$
 to the end of the formula

1. Write F in NNF

 $F_1: \forall x. (\forall y. \neg p(x,y) \vee \neg p(x,$

2. Rename quantified variables to fresh names

$$
F_2: \ \forall x. \ (\forall y. \neg p(x,y) \lor \neg p(x,z)) \lor \exists w. \ p(x,w)
$$

\n
$$
\ulcorner \text{Both are in the scope of } \forall x \urcorner
$$

3. Remove all quantifiers to produce quantifier-free formula

$$
F_3: \neg p(x,y) \vee \neg p(x)
$$

$$
\exists y.\; p(x,y)
$$

$$
z)) \vee \exists y. p(x,y)
$$

 $(x, z) \vee p(x, w)$

4. Add the quantifiers before F_3

$$
F_4: \forall x. \forall y. \exists w. \neg p(x,y) \vee \neg p(x,z) \vee p(x,w)
$$

Alternately,

$$
F_4': \forall x. \ \exists w. \ \forall y. \ \neg p(x,y) \lor \neg p(x)
$$

Note: In F_2 , $\forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$. Also, $\exists w$ is in the scope of $\forall x$, therefore the order of the quantifiers must be $\cdots \forall x \cdots \exists w \cdots$

$$
F_4 \Leftrightarrow F \text{ and } F'_4
$$

Note: However, possibly, $G \nleftrightarrow F$ and $G' \nleftrightarrow F$, for

$$
G: \ \forall y. \ \exists w. \ \forall x. \ \neg p(x,y)
$$

 G' : $\exists w. \forall x. \forall y. \cdots$.

 $(x, z) \vee p(x, w)$

$$
\Leftrightarrow F
$$

 $\vee \neg p(x, z) \vee p(x, w)$

Some meta properties of ROL.

-
-
-
- -
	-
-
-
-
-
-
-
-
- -
-
-
-
-
- - -
	-
- -
-
-
-
-
-
-
-
-
- -
	- - -
-
- -
-
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Soundness and Completeness of Proof Rules

Semantic Argument Proof

- To show FOL formula F is valid, assume $I \not\models F$ and derive a contradiction $I \models \bot$ in all branches
	- Soundness If every branch of a semantic argument proof reach $I \models \bot$, then F is valid
	- Completeness Each valid formula F has a semantic argument proof in which every branch reach $I \models \bot$

(Un)Decidability of FOL

A problem is decidable if there exists a procedure that, for any input: 1. halts and says "yes" if answer is positive, and 2. halts and says "no" if answer is negative (Such a procedure is called an algorithm or a decision procedure)

Undecidability of FOL [Church and Turing]: Deciding the validity of an FOL formula is undecidable

Deciding the validity of a PL formula is decidable The truth table method is a decision procedure

-
-
-

-
-

Turing

Semi-decidability of FOL

A problem is semi-decidable iff there exists a procedure that, for any input: 1. halts and says "yes" if answer is positive, and 2. may not terminate if answer is negative.

Semi-decidability of FOL:

For every valid FOL formula, there exists a procedure (semantic argument method) that always terminates and says "yes". If an FOL formula is invalid, there exists no procedure that is guaranteed to terminate.

Summary and Logistics

- Thanks for the submissions and sorry for the confusion.
- No (compulsory) reading this week, will encourage reading CoC Text.
- Next Class, FO Theories and Satisfiability Modulo Theory (SMT) Solvers.
- Discuss the paper in the second half of the class.

