CS57335 Program Synthesis

#6.SAT Solving

Ashish Mishra, August 16, 2024

Partly based on slides by Roopsha Samata at Purdue

Roadmap

®* Previously
* PL

® Today
® Normal Forms and Tseitin’'s Transformation
®* DPLL algorithm for SAT solving
®* One challenge for current SAT solvers

® Variations of the satisfiability problem (e.g., MaxSAT)

Example : Recap PL formula

formula F: (PA Q) — (T V-Q)

atoms: P, Q, T

literals: P, Q, T, =@

subformulae: P, Q, T, = Q, PAQ, TV -Q, F
abbreviation

F:-PANQ — TV-Q

PL Semantics (Meaning)

Sentence F + Interpretation / = Truth value
(true, false)

Interpretation

| : {P > true, Q — false,---}

Evaluation of F under /:

Fl -

where 0 corresponds to value false
0 1 1

true

1 0
FrlF || AN F|F YV | FR — FH|FR <~ F
0] 0 0 0 1 1
0|1 0 1 1 0
1|0 0 1 0 0
1 |1 1 1 1 1

If F evaluates to

Falsifying

true
false

Interpretations

under /

PL. Semantics (Inductive definitions)

Inductive Case:

Base Case:

P | = —F iff | = F
I L | = F N F iff | = Frand !l = F»
| | = L V F iffl = Frorl = F>
I'= P it 1[P] = true | = F, —» F, iff,ifl = Fithen ! = F
I P it [[P] = false | = F o F, iff,| = Fiand ! & F,
or | W= Frand | £ F
Note:

II#Fl—)FQ 1ff I—Flandll;éFg

Satisfiability and Validity

F is satisfiable iff there exists I : I E F

FisvalidiffforallI: I E F

Procedure for deciding
satisfiability or validity
suffices!

Duality:
F is valid iff =F is unsatisfiable

Normal Forms

Normal Forms

®* A normal form for a logic is a syntactical restriction such that for every formula in the
logic, there is an equivalent formula in the normal form.

® Three useful normal forms for propositional logic:
® Negation Normal Form (NNF)
® Disjunctive Normal Form (DNF)

® Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

" . Conversion to NNF:
T, L, propositional variables

Atom | =Atom Eliminate = and &
Literal | Formula op Formula “Push negations in” using DeMorgan’s Laws:
VIA A(FL A Fy) © (=F; V —F,)

The only logical connectives are =, A, V —(F, V F,) © (=F; A —F,)

Negations appear only in literals
Example: Convert F: (P —- —=(P A Q)) to NNF

F" . ==P A ==(P A Q) De Morgan's Law
F":P AP A Q -

F " is equivalentto F (F " < F) and is in NNF

Disjunctive Normal Form (DNF)

T, L, propositional variables Conversion to DNF:

Atom | =Atom First convert to NNF

Literal A Disjunct Distribute A over V

Disjunct V Formula
((F1V F) A F3) © ((F1 A F3) V (F; A F3))

Disjunction of conjunctions of literals (Fin(Fy V F)) & (B A Fp) v (FL A Fa))
\//\8,-,]- for literals ¢; ;
i

Deciding satisfiability of DNF formulas is trivial

Why not convert all PL formulas to DNF for SAT solving?
Exponential blow-up of formula size in DNF conversion!

Example

Example: Convert

F - (Ql V —l—le) N\ (—lRl —> R2) iInto DNF

F' (Ql\/ QQ)/\(Rl\/RQ) iIn NNF
F" - (Ql A\ (Rl V RQ)) V (QQ A\ (Rl V R2)) dist
F" : (Q1AR)V(@QLAR)V(QAR)V (@A Ry) dist

F " is equivalentto F (F " < F) and is in DNF

Conjunctive Normal Form (CNF)

T, L, propositional variables Conversion to CNF:

Atom | =Atom First convert to NNF

Literal V Clause o
Distribute V over A

Clause A Formula

(F1AF)VE) e (FLV F3)A(F,V F3))

Conjunction of disjunctions of literals (FLV(F, A F)) & (FLV) A(FLV F))

/\\/fi,j for literals K,',j
I

Deciding satisfiability of CNF formulas is not trivial
CNF conversion must also exhibit an exponential blow-up of formula size
Yet, almost all SAT solvers convert to CNF first before solving. Why?

Natural representation because in practice, many formulas arise
from multiple constraints that must hold simultaneously (AND).

Potential Problem with CNEF: Size blowup

Distributivity will duplicate entire subformulas

Can happen repeatedly: (p1 Ap2 Ap3) V(g1 A g2 A qg3) =

(PLV (g1 AG2Aq3)) A(P2V (g1 AG2AG3)) A(p3V (g1 A g2 A g3))
=(PLVaq)A(pP1V q)A(p1V g3)

A(p2V aqi) AN(p2V q2) A(p2V g3)

NP3V ai) A(p3V q2) A(p3V qs)

Worst-case blowup? : exponentiall

Can't use this transformation for subsequent algorithms (e.g.,
satisfiability checking) if resulting formula is inefficiently large
(possibly too large to represent/process).

Equisatisfiability and Tseitin’s Transformation

Two formulas F; and F, are equisatisfiable iff:
F; is satisfiable iff F is satisfiable

Tseitin’s transformation converts any PL
formula F;to equisatisfiable formula F5 in
CNF with only a linear increase in size

Note that equisatisfiability is a much weaker
notion than equivalence, but is adequate for
checking satisfiability.

Tseitin Transformation

|ldea: rather than duplicate subformula:
introduce new proposition to represent it
add constraint: equivalence of subformula with new proposition

write this equivalence in CNF

Transformation rules for three basic operators
formula p < formula rewritten in CNF

—A (FA— p)A(p— —A) (AV p) A (=AV —p)
ANB (AAB—=p)A(p—>AAB) (mAV-BVp)A(AV-p)A(BV -p)
AVB (p—>AVB)A(AVB—p) (AVBV-p)A(-AVp)A(—BYV p)

Tseitin’s Transformation

1. Introduce an auxiliary variable rep(G) for each subformula G = G4 op G, of formula F;

2. Constrain auxiliary variable to be equivalent to subformula: rep(G) < rep(G1) op rep(G,)

3. Convert equivalence constraint to CNF: CNF(rep(G) < rep(G1) op rep(G5))

4. Let F, berep(F) A AgCNF(rep(G) < rep(Gq) op rep(G,)). Check if F, is satisfiable.

F, and F, are equisatisfiable!

Tseitin Transformation: Example

Add numbered proposition for each operator:

1 2

(a A =b)V —(c Ad)
no need to number negations
nor top-level operator (...) V (...)

1 2
New propositions: py <> aA b, pr+<cAd.

Rewrite equivalences for new propositions in CNF,

conjunct with top-level operator of formula:
(p1V —p2) overall formula

A(maVbVp)A(aV-p)A(=bV —pr1) p1 <> aA-b
A(mcVadVp)A(cV-p)A(dV—po) po < c/Nd

Example

Let ibe) A0 LoD ()0)

Example

)
Ve
A (q

=),

be (p A q) V —(

F

Let

€1)
— e9 V

€1

o <> P A\(Q
<7 1€

€3

N\ €g
€5

7

€4

P
<>
€5<—>q\/ﬂe7
€6

Srd e EmY

Example

let F be(pigl & pAL0 -)

N

€1 < e9 V eg

e1 v en . 9
-9 V €q

ey N e

eo <> P N\(Q

Co <70 €A

eq4 < es5 N\ ég
€5 <7 P
Tl e 1R el

€7 57

Example

ket Ebell g (oD g)
B ¢

B e¢; < ey V es
el v e v €3
(o) o
g 20 BAVE

B D0
=P \V —(q \V4 €9
ey D
—ey V q

£ <7 A
€L <2 €5 |\ €6
€5 <> P
eg < qV ey

€7 ¢ 1

What do we get?

A new formula with more propositions than the original one
NOT an equivalent formula

New formula is satisfiable iff the original is satisfiable
we call it equisatisfiable)

Size of resulting formula: linear in original size
good for use in satisfiability checking

The Boolean Satisfiability problem

A bit of history The SAT problem
Cook Levin Karp For F in CNF, existsI : I E F ?

First NP-complete problem!

Cook-Levin Theorem:
SAT is NP-complete

Cook, The complexity of theorem proving procedures, 1971

Karp, Reducibility among combinatorial problems, 1972

PrOgram verification Yon Combinatorial dESign

@O;C
% : :
%\S} Classical planning
Automatic circuit testing Sy,
Do Computational biology
G
Interpolation "ésolution Particle physics
T SAT solver
- raph problem
Decision procedures Grapn problems
C .
e\ \,860‘\ Cryptanalysis
S
Temporal logic PO
\OO\ (\}-
N\ N
| @QOQ’ SAT Live portal
Model checking R o |
3 ttp://www.satlive.org

SAT Comp: annual SAT-Solver competition

Compiler correctness http://www.satcompetition.org

A Modern SAT Solver

A Modern SAT Solver

"y SAT
Tseitin’s
: (+model)
. transformation : .
Original Equisatisfiable AT Solver
formula CNF formula
UNSAT

Almost all SAT solvers today are based on DPLL (Davis-Putnam-Logemann-Loveland)

These algorithms are

also called
“Decision Procedures”

History Again

1962: the original algorithm known as DP (Davis-Putnam)
= “simple” procedure for automated theorem proving

Davis and Putham hired two programmers, Logemann and Loveland,
to implement their ideas on the IBM 704.

Not all of the original ideas worked out as planned
= refined algorithm is what is known today as DPLL

DPLL Insight

Two distinct approaches for the Boolean satisfiability problem

» Search
» Find satisfying assignment by searching through all possible assignments
» Example: truth table

» Deduction
» Deduce new facts from set of known facts, i.e, application of proof rules
» Example: semantic argument method

» DPLL combines search and deduction in a very effective way!

Propositional Resolution

Consider two clauses in CNF:
C]_: (l1VpV lk)
C,: (V... ...V [})

We can deduce a new clause (3, called
Cs: (uVv..V L VvIv...... vV [)

Correctness:

1. If pis assigned T : since C; is SAT and since =pis L, ([V. vV [,) must be true
2. If pisassigned L :since C, is SAT and sincepis L, (I V...... V [},) must be true
3. Thus, C3 must be true

Example

F: (-PVQ) AN P A Q.

From resolution

(~PVQ) P
Q Y

construct
F; - (—IP\/Q) NP AN-Q N Q.

From resolution

Q¢
_L Y

deduce that F', and thus the original formula, is unsatisfiable.

Unit Resolution or BCP

Ci:p

CZ . (11V—|pV ln)
We can deduce a new resolvent:
C3: (ll V...V ln)

Restricted Resolution: BCP

Boolean Constraint Propagation (BCP)

If a clause contains one literal 7,

Set £ to T: ---/\[A---

Remove all clauses containing ¢: o A M)A -

Remove —/¢ in all clauses: e A (e
based on the unit resolution
¢ -¢V C <« clause

C

Example:

F: (P) AN (-PVQ) A (RV-QVS)

(P) is a unit clause. Therefore, applying unit resolution F': (Q) A (RV-QVS) .

P (=PVQ)
Q

Applying unit resolution again

F": (RVS)
Q RV -QVS

RVS

Basic DPLL (with BCP)

// returns SAT if CNF formula F is satisfiable; //
otherwise returns UNSAT

(F)
G = (F)
if (G =T) then return SAT
else if (G =1) then return UNSAT

Boolean constraint propagation

Decision heuristics

p = choose_var(G) «
if (DPLL(G[p+~ T])) then return SAT,
else return (DPLL(G|p » 1]));

\
\ Backtracking

Example

F: (wPVQVR) N ("QVR) AN (-QV-R) A\ (PV-QV -R) .

On the first level of recursion, DPLL must branch. Branching on () or R will
result in unit clauses; choose Q.

F
Q— T / \Q — 1
(R) A\ (-R) N (PV -R) (-PV R)
B B ‘ R— T
(R i
P 1
1 I : {P > false, Q > false, R+ true}

Unit Resolution, optimized => PLP

Consider two clauses in CNF: Unit clause: literal
Ci: p +
CZ: (11V—|len)

We can deduce a new resolvent: if variable p appears only positively

: or only negatively in F , it should not be chosen by
C3: (LV...v In) choose vars(F ’).

» DPLL uses unit resolution
» Boolean Constraint Propagation: all possible applications of unit resolution on input

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to T.
If P occurs only negative set it to
Then do the simplifications as in Boolean Constraint Propagation

DPLL with PLP

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec DPLL F =
let F/ = BCP F in
let F/ =pPLP F’ in
if F” = T then true
else if F/ = | then false
else
let P = CHOOSE vars(F") in
(DPLL F"{P+ T})V (DPLL F"{P+ 1})

Example

F: (FPVQVRA(QVR)A(-QV -R)A(PV-QV —R)

F
Q 7 &—) 1
(R)A(—~R)A(PV —R) (-PV R)

R — T

[: {P — false, Q +— false, R — true}
(No matter what P is)

Beyond DPLL

Learning conflict clauses that summarize conflicts
and augmenting F with them

Non-chronological backtracking to earlier decision Conflict-Driven Clause Learning

Pe—

levels based on cause of conflict (CDCL)

Decision heuristics choose the next literal to add to
the current partial assignment based on the state of
the search.

Further details: Reading for todays Class: Chapter 2.

Decision Procedures: An Algorithmic Point of View Authors: Daniel Kroening, Ofer Strichman

SAT solving landscape today

® CDCL based solvers routinely solve problems with hundred of thousands or even
millions of variables.

® But still possible to create very small instances that take very long

Not every small SAT problem is easy

An example: the pigeonhole problem

s it possible to place n pigeons into m holes? 2 | 4 - =
_— W >y

Obvious for humans!

But turns out to be very difficult to solve for SAT solvers!

Encoding the Pigeon hole problem in PL

Let’s encode this for m n — 1.

7

» Letp;; stand for “

» Given we have n — 1 holes, how to say i 'th pigeon must be placed in some hole?

» Given we have n pigeons, how to say every pigeon must be placed in some hole?

P11V P12 V.--P1n-2 V P1n-1
N D21V DP22V...02n-2 V P2n-1

A pn,lv Pn,z V---pn,n—z v pn,n—l

Pigeon hole problem, cont.

More concise way of writing this:

AN (. V DPri)

0<k<n 0O=<il<n-1

We also need to state that multiple pigeons cannot be placed into same hole:

NN N P VD
kK 1 jJ#1

Withn > 25, this formula cannot be solved by competitive SAT solvers!

Problem: Conflict clauses talk about specific holes/pigeons, but problem is symmetric!

Research on symmetry breaking

Variations of the
Boolean Satisfiability problem

Maximum Satisfiability (MaxSAT)

Given CNF formula F, find assighment maximizing the number of satisfied clauses of F

» If F is satisfiable, the solution to the MaxSAT problem is the number of clauses in F.

» |If F is unsatisfiable, we want to find a maximum subset of F’s clauses whose
conjunction is satisfiable.

Partial MaxSAT

Given CNF formula F where each clause is marked as hard or soft, find an assignment that
satisfies all hard clauses and maximizes the number of satisfied soft clauses

Partial Weighted MaxSAT

Given CNF formula F where each clause is marked as hard or soft and is assighed a weight,
find an assignment that satisfies all hard clauses and maximizes the sum of the weights of

satisfied soft clauses

Partial MaxSAT is an instance of partial weighted MaxSAT where all clauses have equal weight

Summary

Today
» DPLL algorithm for SAT solving
» One challenge for current SAT solvers

» Variations of the satisfiability problem (e.g., MaxSAT)

Next
» First-order logic

