CS57335 Program Synthesis

#5. Propositional Logic
Normal Forms

Ashish Mishra, August 13, 2024

Partly based on slides by Roopsha Samata at Purdue

EUSolver

®* Q1: What does EUSolver use as behavioral constraints? Structural
® constraint? Search strategy?
® First-order formula
® Conditional expression grammar

® Bottom-up enumerative with OE + pruning

®* Why do they need the specification to be pointwise?

® How would it break the enumerative solver?

EUSolver

Q2: What are pruning/decomposition techniqgues EUSolver used to speed up the
search?

® Condition abduction + (special form of) equivalence reduction
Why does EUSolver keep generating additional terms when all inputs are covered?

How is the EUSolver equivalence reduction differ from observational equivalence we
saw in class?

® Only takes input coverage as the judgement, rather than similar behavior.

Can we discard a term that covers a subset of the points covered by another term?

EUSolver

®* Q3: What would be a naive alternative to decision tree learning for synthesizing
branch conditions?

® Learn atomic predicates that precisely classify points
® why is this worse?

® is it as bad as ESolver?

®* Next best thing is decision tree learning w/o heuristics

® why is this worse?

EUSolver: strengths

Divide-and-conquer (aka condition abduction)

* scales better on conditional expressions
* but: they didn't invent it

Neat application of decision tree learning
* leverages the structure of Boolean expressions

Empirically does well, especially on PBE

EUSover: weaknesses

Only applies to conditional expressions

Does not always generate the smallest expression
e in the limit, can find the smallest solution
* but unclear when to stop

Only works for pointwise specifications
* but so do ALL CEGIS-based approaches

No solution size evaluation beyond those solved by ESolver
No ablation of DT repair / branch-wise verification

Reading: point-wise,

Counterexample-Guided Quantifier Instantiation for Synthesis in SMT, CAV 15

Top-down enumeration pruning,
continue...

Types and Type based Top-down
pruning

Example

Drop the smallest element from each list

71, 75, 83 75, 83|
90, 87, 95 » |90 95
77 80]

68, 77, 80

Example

71, 75, 83 75, 83|
90, 87, 95 » [90 95]
[68, 77 80] 177 80|

How can we discover this program?

dropmins X = map dropmin X
where dropmin y = filter isNotMin y
where isNotMin z = foldl h False vy
where h t w=1t || (w < z)

Defining the language

expr = var
| Jx. expr
| filter expr expr
| map expr expr
| foldl expr expr expr
| boolExpr | arithExpr

expr = var

Ax. expr

Top-down search o
- map expr expr

foldl expr expr expr

boolExpr | arithExpr

dropmins in = expr

in— . expr filter expr exApr map expr éxpr expr fold exApr expr expr | boolExpr “arithExpr

® o o

Many of these programs can be eliminated before
having to complete them!

How?

expr = var

Ax. expr

Top-down search o
- map expr expr

foldl expr expr expr

boolExpr | arithExpr

dropmins in = expr

in— . expr filter expr exApr map exp} expr fold exApr expr expr | boolExpr “arithExpr

N

This is a fully concrete program, and
it clearly doesn’t match the examples

expr = var
- Ax. expr
Top-down search o
- map expr expr
foldl expr expr expr
boolExpr | arithExpr

dropmins in = expr

W ixexpr filter expr expr map exp} expr fold exApr exprexpr boolExpr “arithExpr

N

This program has a missing expression, but we can already tell
it will not work. Why not?

Types

Our simple language supports an infinite set of types of 3 basic

kinds
Tt := Int | Bool | k4 | T—> T
Integer Boolean List of some Function from some type

type to some other type

Types

71, 75, 83 75, 83|
90, 87, 95 » [90 95]
[68, 77 80] 177 80]

| [Unt]] [[Int]]

Input and output types are lists of lists of integers

Types

Each element in our language has a type given by a typing rule

premises

Crexpr:rt

A typing rule like the one above states that .., has type

- in a context ¢ as long as all the premises are satisfied
« A context simply tracks information about the type of any variables

Types

Each element in our language has a type given by a typing rule

C says var fity =1, epxr:t C,x :7 Fexpr:t,
has type T CF fexpr:.t, CHAX.expr:7ty — 1,
Ckvar:t

map. (Tl — T2> — [7’-1] — [TZ] fOldl (Tstart — Tyt = Tstart) — Tstart — [Tlst] — Tstart

bool Expr : Bool filter:(t — Bool) — [7] — [7] intExpr : Int

expr = var

Ax. expr

Type-based pruning o
R —————— map expr expr

foldl expr expr expr

boolExpr | arithExpr

dropmins in = expr

W ixexpr filter expr expr map exp} expr fold exApr exprexpr boolExpr “arithExpr

N

expr T, assuming x : 7 Based on the rule, this expression will have a type - - -,

AX. €Xpr:7 — 7 But we know the output must have type | 1m
There is no way those types can be made equal,
so we can discard this expression!

expr = var
_ Ax. expr
Type-based pruning o
R —————— map expr expr
foldl expr expr expr
boolExpr | arithExpr

dropmins in = expr

)(‘ . exQr filter expr exApr map exp} expr fold exApr expr expr | boolExpr “arithExpr

bool Expr : Bool :

With the same reasoning we can discard both of
these expressions

int Expr - Int They cannot possibly have the correct type

expr = var
_ Ax. expr
Type-based pruning o
R —————— map expr expr
foldl expr expr expr
boolExpr | arithExpr

dropmins in = expr

}(‘ . exQr filter expr exApr map exp} expr fold exApr expr expr | bo%xpr ’arWExpr

N

We know the output should be |m

This means the first expr must be -, -
otherwise the types won’t match

map: (Tl — Tz) — [771] — [1]

expr = var

Type-based pruning

e

W

Am.é>ér4

Ax.expr

dropmins in = expr

filter expr exApr map exp} expr fold exApr expr expr | bo%xpr

filter expr éxpr map ex"pr expr fold expr expr expr bo%xpr

AX . expr

filter expr expr
map expr expr
foldl expr expr expr
boolExpr | arithExpr

aerxpr

’aerxpr

We can quickly dismiss many possible expressions

because they cannot produce the type -, - (i

Program Synthesis

>

Program Verification

Propositional Logic
Normal Forms

Calculus of Computation?

It Is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful
In the next century as that between analysis and physics
in the last. The development of this relationship
demands a concern for both applications and
mathematical elegance.

John McCarthy
A Basis for a Mathematical Theory of Computation, 1963

Propositional logic (PL) syntax

Atom T (“true”) and L (“false”)
P, 497,01, 91
Literal atom a or its negation m«
Formula iteral or application of a toF, Fy, F,
—F “not” (negation)
F, VF, “or” (disjunction)
F, AF, “and” (conjunction)
F, - F, “implies” (implication)
F, o F, fifandonlyif” (iff)

Example

formula F: (PAQ) — (T V-Q)

atoms: P, Q, T

literals: P, Q, T, = Q

subformulae: P, Q, T, = Q, PAQ, TV -Q, F
abbreviation

F:-PANQ — TV-Q

PL Semantics (Meaning)

Sentence F + Interpretation / = Truth value
(true, false)

Interpretation

| : {P > true, Q — false,---}

Evaluation of F under /:

Fl -

where 0 corresponds to value false
0 1 1

true

1 0
FrlF || AN F|F YV | FR — FH|FR <~ F
0] 0 0 0 1 1
0|1 0 1 1 0
1|0 0 1 0 0
1 |1 1 1 1 1

If F evaluates to

Falsifying

true
false

Interpretations

under /

Example

F:PAN Q@ — PV -Q
| : {P — true, Q — false}

F evaluates to true under |/

PlQI|I " Q|PANQ|PV -Q
1|0 1 0 1
1 = true 0 = false

PL. Semantics (Inductive definitions)

Inductive Case:

Base Case:

P | = —F iff | = F
I L | = F N F iff | = Frand !l = F»
| | = L V F iffl = Frorl = F>
I'= P it 1[P] = true | = F, —» F, iff,ifl = Fithen ! = F
I P it [[P] = false | = F o F, iff,| = Fiand ! & F,
or | W= Frand | £ F
Note:

II#Fl—)FQ 1ff I—Flandll;éFg

Example

F: PANQ — PV -Q
[: {P — true, Q@ — false}

1. I = P since /[P] = true
2. | ¥ Q since /[Q] = false
3. | — —IQ by 2 and —

4. | FE P AN Q by 2 and A

5. | E PV =Q by 1 and V

6. | = F by 4 and —

Thus, F iIs true under /.

Why?

Satisfiability and Validity

F is satisfiable iff there exists I : I E F

FisvalidiffforallI: I E F

Procedure for deciding
satisfiability or validity
suffices!

Duality:
F is valid iff =F is unsatisfiable

Deciding satisfiability/validity

® Basic techniques
® Truth table method: search-based
®* Semantic argument method: deductive technique

® SAT solvers

® Combine search and deduction

Truth table method

1. Enumerate all interpretations
2. Search for satisfying interpretation

Brute-force!

Impractical (2" interpretations)
Can’t be used if domain is not
finite, e.g., for first-order logic

F:PAQ - PV —=Q

PAQ -Q PV =Q

T

1

[+ ©
—H |||+
|~ |

Thus F i1s valid.

Example

F:-PV Q — P AN Q@

PV Q[P

= = O O™
— Ol = OlL)
= OO = ™M

V
0
1
1
1

= Ol Ol >

Thus F is satisfiable, but invalid.

«— satisfying /
«— falsifying /

Method 2: Semantic Proof rules

I = -F | #~ —F
Argument EF = F
| = FAG | - FAG
I = F I~ F | | £ G
Proof by contradiction: _ ¢ <and 8 I\O, 8
1. Assume F is not valid
2. Apply proof rules ; :I - |F\;G: e ; z iVG
3. Contradiction (i.e, L) along every I ¥ G
branch Qf progftree =>.F is valid 'L P L FLG
4. Otherwise, F is not valid I F | I EG = F
LG
| = F— G ; ; ,,::
I E FAG | | £ FVG .
A bit of an overhead for PL
Applicable to first-order logic |l ForG

Example ToProve F: PAQ — PV =Q isvalid

Let’'s assume that F is not valid and that | is a falsifying interpretation.

1. I %= PANQ — PV -Q assumption

2. | E P AN @ 1and —

3. I %= PV -Q land —

4. | = P 2 and A

5. I ¥~ P 3and V

6. I = L 4 and 5 are contradictory

Thus F is valid

Example 2

ToProve F. (P - Q) A (Q — R) - (P — R) isvalid.

Example 2

Let's assume that F iIs not valid.

1. I ¥ F

2. | = (P —- Q) AN (Q — R)
3. | ~ P — R

4. | = P

5. I ¥~ R

6. | = P — @

7. I = Q — R

assumption
1and —
1and —
3and —
3and —
2 and of A
2 and of A

Example 2

Two cases from 6

8a. I ¥ P 6 and —
92. | = L 4 and 8a are contradictory
and
8b. | = Q@ 6 and —
Two cases from 7
9ba. | FE Q@ 7 and —
10ba. | = L 8b and 9ba are contradictory
and
Obb. | = R { and —
10bb. I = L 5 and 9bb are contradictory

Our assumption is incorrect in all cases — F is valid.

Semantic judgements, Equivalence

F1 and F; are equivalent (F; & F;)

iff for all interpretations I, | = F; < F;

To prove F{ & F> show F; <« F»> is valid.

F1 implies F- (F1 —> F2)
iIff for all interpretations /, / F, — F

F, & F> and F; = F»> are not formulael

Normal Forms

®* A normal form for a logic is a syntactical restriction such that for every formula in the
logic, there is an equivalent formula in the normal form.

® Three useful normal forms for propositional logic:
® Negation Normal Form (NNF)
® Disjunctive Normal Form (DNF)

® Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

" . Conversion to NNF:
T, L, propositional variables

Atom | =Atom Eliminate = and &
Literal | Formula op Formula “Push negations in” using DeMorgan’s Laws:
VIA A(FL A Fy) © (=F; V —F,)

The only logical connectives are =, A, V —(F, V F,) © (=F; A —F,)

Negations appear only in literals
Example: Convert F: (P —- —=(P A Q)) to NNF

F" . ==P A ==(P A Q) De Morgan's Law
F":P AP A Q -

F " is equivalentto F (F " < F) and is in NNF

Disjunctive Normal Form (DNF)

T, L, propositional variables Conversion to DNF:

Atom | =Atom First convert to NNF

Literal A Disjunct Distribute A over V

Disjunct V Formula
((F1V F) A F3) © ((F1 A F3) V (F; A F3))

Disjunction of conjunctions of literals (Fin(Fy V F)) & (B A Fp) v (FL A Fa))
\//\8,-,]- for literals ¢; ;
i

Deciding satisfiability of DNF formulas is trivial

Why not convert all PL formulas to DNF for SAT solving?
Exponential blow-up of formula size in DNF conversion!

Example

Example: Convert

F - (Ql V —l—le) N\ (—lRl —> R2) iInto DNF

F' (Ql\/ QQ)/\(Rl\/RQ) iIn NNF
F" - (Ql A\ (Rl V RQ)) V (QQ A\ (Rl V R2)) dist
F" : (Q1AR)V(@QLAR)V(QAR)V (@A Ry) dist

F " is equivalentto F (F " < F) and is in DNF

Conjunctive Normal Form (CNF)

T, L, propositional variables Conversion to CNF:

Atom | =Atom First convert to NNF

Literal V Clause o
Distribute V over A

Clause A Formula

(F1AF)VE) e (FLV F3)A(F,V F3))

Conjunction of disjunctions of literals (FLV(F, A F)) & (FLV) A(FLV F))

/\\/fi,j for literals K,',j
I

Deciding satisfiability of CNF formulas is not trivial
CNF conversion must also exhibit an exponential blow-up of formula size
Yet, almost all SAT solvers convert to CNF first before solving. Why?

Natural representation because in practice, many formulas arise
from multiple constraints that must hold simultaneously (AND).

Potential Problem with CNEF: Size blowup

Distributivity will duplicate entire subformulas

Can happen repeatedly: (p1 Ap2 Ap3) V(g1 A g2 A qg3) =

(PLV (g1 AG2Aq3)) A(P2V (g1 AG2AG3)) A(p3V (g1 A g2 A g3))
=(PLVaq)A(pP1V q)A(p1V g3)

A(p2V aqi) AN(p2V q2) A(p2V g3)

NP3V ai) A(p3V q2) A(p3V qs)

Worst-case blowup? : exponentiall

Can't use this transformation for subsequent algorithms (e.g.,
satisfiability checking) if resulting formula is inefficiently large
(possibly too large to represent/process).

Equisatisfiability and Tseitin’s Transformation

Two formulas F; and F, are equisatisfiable iff:
F; is satisfiable iff F is satisfiable

Tseitin’s transformation converts any PL
formula F;to equisatisfiable formula F5 in
CNF with only a linear increase in size

Note that equisatisfiability is a much weaker
notion than equivalence, but is adequate for
checking satisfiability.

Tseitin Transformation

|ldea: rather than duplicate subformula:
introduce new proposition to represent it
add constraint: equivalence of subformula with new proposition

write this equivalence in CNF

Transformation rules for three basic operators
formula p < formula rewritten in CNF

—A (FA— p)A(p— —A) (AV p) A (=AV —p)
ANB (AAB—=p)A(p—>AAB) (mAV-BVp)A(AV-p)A(BV -p)
AVB (p—>AVB)A(AVB—p) (AVBV-p)A(-AVp)A(—BYV p)

Tseitin’s Transformation

1. Introduce an auxiliary variable rep(G) for each subformula G = G4 op G, of formula F;

2. Constrain auxiliary variable to be equivalent to subformula: rep(G) < rep(G1) op rep(G,)

3. Convert equivalence constraint to CNF: CNF(rep(G) < rep(G1) op rep(G5))

4. Let F, berep(F) A AgCNF(rep(G) < rep(Gq) op rep(G,)). Check if F, is satisfiable.

F; and F, are equisatisfiable!

Size of each equivalence constraint is bounded by a constant
This restricts the size of F, to be linear in the size of F;: | F, | =30.| F; | + 2

Tseitin Transformation: Example

Add numbered proposition for each operator:

1 2

(a A =b)V —(c Ad)
no need to number negations
nor top-level operator (...) V (...)

1 2
New propositions: py <> aA b, pr+<cAd.

Rewrite equivalences for new propositions in CNF,

conjunct with top-level operator of formula:
(p1V —p2) overall formula

A(maVbVp)A(aV-p)A(=bV —pr1) p1 <> aA-b
A(mcVadVp)A(cV-p)A(dV—po) po < c/Nd

What do we get?

A new formula with more propositions than the original one
NOT an equivalent formula

New formula is satisfiable iff the original is satisfiable
we call it equisatisfiable)

Size of resulting formula: linear in original size
good for use in satisfiability checking

Logistics

®* Reviews for Week 3.

® Due Thursday!

® Other questions?

