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EUSolver

• Q1: What does EUSolver use as behavioral constraints? Structural

• constraint? Search strategy?


• First-order formula


• Conditional expression grammar


• Bottom-up enumerative with OE + pruning


• Why do they need the specification to be pointwise?

• How would it break the enumerative solver?



EUSolver

• Q2: What are pruning/decomposition techniques EUSolver used to speed up the 
search?

•  Condition abduction + (special form of) equivalence reduction


• Why does EUSolver keep generating additional terms when all inputs are covered?

• How is the EUSolver equivalence reduction differ from observational equivalence we 

saw in class?

• Only takes input coverage as the judgement, rather than similar behavior.


• Can we discard a term that covers a subset of the points covered by another term?



EUSolver

• Q3: What would be a naive alternative to decision tree learning for synthesizing 
branch conditions?

• Learn atomic predicates that precisely classify points


• why is this worse?


• is it as bad as ESolver?


• Next best thing is decision tree learning w/o heuristics

• why is this worse?



EUSolver: strengths



EUSover: weaknesses

Reading: point-wise, 

Counterexample-Guided Quantifier Instantiation for Synthesis in SMT, CAV ’15 



Top-down enumeration pruning, 
continue…
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Types and Type based Top-down 
pruning
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Example

• Drop the smallest element from each list

[71, 75, 83]
[90, 87, 95]
[68, 77, 80]

[75, 83]
[90 95]
[77 80]



Example

[71, 75, 83]
[90, 87, 95]
[68, 77, 80]

[75, 83]
[90 95]
[77 80]

How can we discover this program?



Defining the language

expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟



Top-down search
expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 .   filter expr expr map expr expr expr fold expr expr expr boolExpr arithExpr

Many of these programs can be eliminated before 

having to complete them!
How?



Top-down search
expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 .   filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

This is a fully concrete program, and  
it clearly doesn’t match the examples



Top-down search
expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 .   filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

This program has a missing expression, but we can already tell 

it will not work. Why not?



Types

• Our simple language supports an infinite set of types of 3 basic 
kinds

𝜏   ≔   𝐼𝑛𝑡   |   𝐵𝑜𝑜𝑙           [𝜏]          𝜏 → 𝜏

Integer List of some 
type

Function from some type  
to some other type

Boolean



Types

[71, 75, 83]
[90, 87, 95]
[68, 77, 80]

[75, 83]
[90 95]
[77 80]

[  [𝐼𝑛𝑡]  ] [  [𝐼𝑛𝑡]  ]

Input and output types are lists of lists of integers



Types

• Each element in our language has a type given by a typing rule


• A typing rule like the one above states that  has type 
 in a context  as long as all the premises are satisfied

• A context simply tracks information about the type of any variables 

𝑒𝑥𝑝𝑟

𝜏 𝐶

𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠
𝐶 ⊢ 𝑒𝑥𝑝𝑟 :𝜏



Types

• Each element in our language has a type given by a typing rule

𝐶 says var 
h𝑎𝑠 𝑡𝑦𝑝𝑒 𝜏 
𝐶 ⊢ var :𝜏 

𝐶, 𝑥 :𝜏1 ⊢ 𝑒𝑥𝑝𝑟 :𝜏2 
𝐶 ⊢ 𝜆 x .  expr :𝜏1 → 𝜏2 

𝑓𝑖𝑙𝑡𝑒𝑟: (𝜏 → 𝐵𝑜𝑜𝑙) → [𝜏] → [𝜏] 

𝑚𝑎𝑝:(𝜏1 → 𝜏2) → [𝜏1] → [𝜏2]  𝑓𝑜𝑙𝑑𝑙:(𝜏𝑠𝑡𝑎𝑟𝑡 → 𝜏𝑙𝑠𝑡 → 𝜏𝑠𝑡𝑎𝑟𝑡) → 𝜏𝑠𝑡𝑎𝑟𝑡 → [𝜏𝑙𝑠𝑡] → 𝜏𝑠𝑡𝑎𝑟𝑡 

𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟 :𝐵𝑜𝑜𝑙  𝑖𝑛𝑡𝐸𝑥𝑝𝑟 :𝐼𝑛𝑡 

𝑓:𝜏1 → 𝜏2      𝑒𝑝𝑥𝑟:𝜏1

𝐶 ⊢ 𝑓 𝑒𝑥𝑝𝑟:𝜏2 



Type-based pruning
expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 .   filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

𝑒𝑥𝑝𝑟 :𝜏2 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑥 :𝜏1

𝜆 x .  expr :𝜏1 → 𝜏2 
Based on the rule, this expression will have a type  
But we know the output must have type  

There is no way those types can be made equal,  
so we can discard this expression!

𝜏1 → 𝜏2

[  [𝐼𝑛𝑡]  ]



Type-based pruning
expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 .   filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

With the same reasoning we can discard both of 

these expressions 
They cannot possibly have the correct type 

𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟 :𝐵𝑜𝑜𝑙 

𝑖𝑛𝑡𝐸𝑥𝑝𝑟 :𝐼𝑛𝑡 



Type-based pruning
expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 .   filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

𝑚𝑎𝑝:(𝜏1 → 𝜏2) → [𝜏1] → [𝜏2] 
We know the output should be  
This means the first expr must be   
otherwise the types won’t match

[ [𝐼𝑛𝑡] ]

𝜏1 → [𝐼𝑛𝑡]



Type-based pruning
expr =  var 

           |  

           | filter expr expr

           | map expr expr

           | foldl  expr expr expr

           | boolExpr | arithExpr

𝜆𝑥 .  𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 .   filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

in expr𝜆 𝑥 .   filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

We can quickly dismiss many possible expressions

because they cannot produce the type 𝜏1 → [𝐼𝑛𝑡]



Program Synthesis

 


 Program  Verification 
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Propositional Logic

Normal Forms
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Calculus of Computation?



Propositional logic (PL) syntax



Example



PL Semantics (Meaning)

Satisfying and 
Falsifying 
Interpretations



Example



PL Semantics (Inductive definitions)



Example



Satisfiability and Validity



Deciding satisfiability/validity

• Basic techniques

• Truth table method: search-based

• Semantic argument method: deductive technique


• SAT solvers 

• Combine search and deduction



Truth table method



Example



Method 2: Semantic

 Argument

Proof rules



Example To Prove

Let’s assume that F is not valid and that I is a falsifying interpretation.

Thus F is valid



Example 2
To Prove



Example 2



Example 2



Semantic judgements, Equivalence



Normal Forms

• A normal form for a logic is a syntactical restriction such that for every formula in the 
logic, there is an equivalent formula in the normal form.


• Three useful normal forms for propositional logic:

• Negation Normal Form (NNF)


• Disjunctive Normal Form (DNF)


• Conjunctive Normal Form (CNF)



Negation Normal Form (NNF)

F ′′′ is equivalent to F (F ′′′ ⇔ F ) and is in NNF



Disjunctive Normal Form (DNF)



Example

F ′′′ is equivalent to F (F ′′′ ⇔ F ) and is in DNF



Conjunctive Normal Form (CNF)



Potential Problem with CNF: Size blowup

Distributivity will duplicate entire subformulas

Worst-case blowup? : exponential!



Equisatisfiability and Tseitin’s Transformation



Tseitin Transformation



Tseitin’s Transformation



Tseitin Transformation: Example



What do we get?



Logistics

• Reviews for Week 3.

• Due Thursday!


• Other questions?


