CS57335 Program Synthesis

#4. Other Search Techniques

Ashish Mishra

Revisit: Optimizing the Bottom-up
Search

STUN ataglance

STUN(in)

Best Effort
Synthesize

) Pros

<

Find Better
Program

/2

Recursive
STUN

Prog ¢ Prog’

STUN ataglance

Best Effort
Synthesize

)

<

Find Better
Program

/2

Recursive
STUN

(1,2) ->1
(2,3) ->2
(4,3) >3
(8,1) -> 8

Prog « Prog’

Simple case: (a,b) * ¢ => out

Examples Grammar

(5,10) * 3 =>15 expr = expr + expr
(8, 11)* -1 =>-11 expr * expr
(3,6)*4 => 12 alb|c
(-3, 8) ¥4 =>-12 - expr

if(bexp) expr else expr
bexp = expr > expr | expr >0

Level 1: a=>|5,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

Simple case: (a,b) * ¢ => out

Examples Grammar

(5,10) * 3 =>15 expr = expr + expr
(8, 11)* -1 =>-11 expr * expr
(3,6)*4 => 12 alb|c
(-3, 8) ¥4 =>-12 - expr

if(bexp) expr else expr
bexp = expr > expr| expr >0

LEVEI 1 a=> [518131'3] b=>[101111618] C=>[3,'1,4,4]
a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1] b+a=>[15,19,9,5] b+b=>[20,22,12,16] b+c=>[13,10,10,12] ct+a=>[8,7,7,1]
c+b=>[13,10,10,12] c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] a*c=>[15,-8,12,-12] b*a=>[50,88,18,-48] b*b=>[100,121,36,64]

b*c=>[30,-11,24,32] c*a=>[15,-8,12,-12] c*b=>[30,-11,24,32] c*c=>[9,1,16,16] -a=>[-5,-8,-3,3] -b=>[-10,-11,-6,-8] -c=>[-3,1,-4,-4]

Simple case: (a,b) * ¢ => out

Examples Grammar
(5,10) * 3 =>15 expr = expr + expr
(8, 11)* -1 =>-11 expr * expr
(3,6)*4 =>12 Eliminate Observationally equivalent ones alb|c
(-3, 8) *4 =>-12 - expr
if(bexp) expr else expr

bexp = expr > expr | expr >0

Level 1: a =>15,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

- c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] a*c=>[15,-8,12,-12] - b*b=>[100,121,36,64]
b*c=>[30,-11,24,32] -- c*c=>[9,1,16,16] -a=>[-5,-8,-3,3] -b=>[-10,-11,-6,-8] -c=>[-3,1,-4,-4]

a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1]

Simple case: (a,b) * ¢ => out

Examples Grammar
(5,10) * 3 => 15 expr = expr + expr
(8, 11)* -1 =>-11 expr * expr
(3.6)%4 => 12 Identify an expression that works for a subset of alb|c
(-3, 8) *4 =>-12 the inputs - expr
if(bexp) expr else expr

bexp = expr > expr | expr >0

Level 1: a =>15,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

-c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] *c=>]15,-8,12,-12 - b*b=>[100,121,36,64]

b*c=>[30,-11,24,32] -- c*c=>[9,1,16,16] -a=>[-5,-8,-3,3] -b=>[-10,-11,-6,-8] -c=>[-3,1,-4,-4]

a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1]

Simple case: (a,b) * ¢ => out

Examples Grammar
(5,10) * 3 =>15 expr = expr + expr
(8, 11)* -1 =>-11 expr * expr
(3,6)*4 =>12 Identify an expression that works for the rest alb|c
(-3, 8) ¥4 =>-12 of the inputs - expr
if(bexp) expr else expr

bexp = expr > expr| expr >0

Level 1: a =>15,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] R~ : b*b=>
[100,121,36,64]
| | -- c*c=>[9’ 1’16’16] -a=>[-5’-8'-3’3] | | - : -c=>[-3’ 1’-4’-4]

a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1]

Simple case: (a,b) * ¢ => out

Examples

(5,10) * 3 =>15
(3,6)%4 => 12
(-3, 8) *4 =>-12

a>a=|[f fff]
b>a=[t,t,1,t]
c>a=[ft,t,f]

a>0=[t,t,f,t]

a*c B

b*C £
a>b=[ff ff]
b>b=[f ff f]
c>b=[f 1 f]
b>0=[t t,t,t]

a>c=[t,f ft]
b>c=[t,t,t,t]

c>c=[f,f,f,f]

Grammar

expr = expr + expr

expr * expr

alb|c

- expr

if(bexp) expr else expr
bexp = expr > expr| expr >0

Simple case: (a,b) * ¢ => out

Examples Grammar
(5,10) * 3 =>15 expr = expr + expr
(3,6)*4 => 12 a*c B expr * expr
(-3, 8) ¥4 =>-12 alb|c
- expr
(8, 11)* -1=>-11 % -
> b*c 2 if(bexp) expr else expr

bexp = expr > expr| expr >0

a>a=[f,f,f,f] a>b=[f,f,ff] a>c=[t,f 1]
b>a=[t,t,t,t] b>b=[f,1,1,f] b>c=[t,t,t,t]
c>a=[f,t,t,f] c>b=[f,f,f,f] c>c=|[f,f,f,f]

a>0=[t,t,f,t] b>0=[t,t,t,t]

P®P=if(c>0)axcelse bxc

Another approach: Hierarchical Search

® When can we separate a problem into simpler subproblems?
®* What if separating based on input examples is infeasible?

®* Chenglong Wang, Alvin Cheung, Rastislav Bodik, Synthesizing Highly
Expressive SQL Queries from Input-output Examples, 2017.

®* Key insight: the problem can be decomposed in a hierarchical way.

Example: SQL

Input Output
Employee Depts Output
Name, Dept Dept, Building XX
Todd, Sales Sales, Al > Todd
Joe, Engineering Engineering, A2 Sally
Alice, Engineering Operations, Al
Sally, Operations
Language
Rel = T Rel , Rel

Select Fields from Rel where Pred

Pred exp = exp | exp > exp | Pred & Pred

Fields table.name as name | table.name as name, Fields

Hierarchical Search

® Key idea:

* First search for the structure of the query These siructures are.
alSo Calle ypotnesis

® Then search for the details of the predicates S5

® Observation:

® If a query has the wrong structure we can see it has the wrong structure
before instantiating the details

The key idea is to define a semantics for queries with holes that is
guaranteed to produce a superset of the records that any

Language With h()les instantiation of the holes may produce

Rel = T Rel , Rel
Select Fields from Rel where [
Fields = table.name as name | table.name as name,
Fields
Input Query Superset of output

Employee Depts
Name, Dept Dept, Building
Todd, Sales Sales, Al
Joe, Engineering Engineering, A2
Alice, Engineering Operations, Al

Sally, Operations

Language with holes

Input

Employee

Todd, Sales

Joe, Engineering
Alice, Engineering
Sally, Operations

Rel T

Fields
Fields

Sales, Al
Engineering, A2
Operations, Al

Rel , Rel
Select Fields

from Rel where [

table.name as name |

Query

Employee

table.name as name,

Superset of output

Todd, Sales

Joe, Engineering
Alice, Engineering
Sally, Operations

Language with holes

Input

Employee

Todd, Sales

Joe, Engineering
Alice, Engineering
Sally, Operations

Rel T

Fields
Fields

Sales, Al
Engineering, A2
Operations, Al

Rel , Rel
Select Fields

from Rel where [

table.name as name |

Query

Depts

table.name as name,

Superset of output

Sales, Al
Engineering, A2
Operations, Al

Language with holes

Input

Employee

Todd, Sales

Joe, Engineering
Alice, Engineering
Sally, Operations

Rel = T Rel , Rel
Select Fields from Rel where -
Fields = table.name as name | table.name as name,
Fields
Query Superset of output
Depts Todd, Sales, Sales, Al

Sales, Al
Engineering, A2
Operations, Al

Employee, Depts

Todd, Sales, Engineering, A2
Todd, Sales, Operations, Al

A
A
A
Sa
Sa
Sa

Joe, Engineering, Sales, Al
Joe, Engineering, Engineering, A2
Joe, Engineering, Operations, Al

ice, Engineering, Sales, Al
iIce, Engineering, Engineering, A2
iIce, Engineering, Engineering, A3

y, O
y, O
y, O

nerations, Sales, Al
nerations, Engineering, A2

oerations, Operations, Al

Language with holes

Rel = T Rel , Rel
Select Fields from Rel where -

Fields = table.name as name | table.name as name,
Fields
Input Query Superset of output
Employee Depts Select Name from Employee Todd
TRE where [Joe
Name, Dept Dept, Building Alice
- Sally
Todd, Sales Sales, Al
Joe, Engineering Engineering, A2

Alice, Engineering Operations, Al
Sally, Operations

Language with holes

Input

Employee

Todd, Sales

Joe, Engineering
Alice, Engineering
Sally, Operations

Rel :e= T Rel , Rel
Select Fields from Rel where -
Fields = table.name as name | table.name as name,
Fields
Query Superset of output
Depts Todd
P Select Name from Todd
_____________ Employee, Depts Todd
Dept, Building PIOY P o¢
_____________ where - JOE
Sales, Al 10€
. . Joe
Engineering, A2 .
Operations, Al Alice
P ’ Alice
Alice
Sa

Sa
Sa

< < <

Viable Queries

Select Name from Employee

where

Todd
Joe

Alice
Sally

Can we find the right predicate?

This is an inductive synthesis problem too!

Select Name from

Todd
Todd
Todd
Joe
Joe
Joe
Ice
Ice
Ice

> >

>

Sa
Sa
Sa

< < <

Employee, Depts
where o

Viable Queries

Select Name from
Employee, Depts
where -

Todd
Todd
Todd

Joe
Joe Employee.Dept = Depts.Dept Todd

oe & Dept=A1l Sally
Ice
Ice
ice

>

>

>

Sa
Sa
Sa

< <X <

Pruning in Top-down enumeration using specs

Top-down Propagation

23

Top-down vs Bottom-up: Basic Philosophy

Guiding the enumeration + Pruning using Outputs

Guiding the enumeration + Pruning using Inputs

Top-down search: reminder

iter O:

iter 1:
iter 2:
iter 3:

iter 4:
iter 5:

iter 6:
iter /:

iter &:

iter 9:

Worklist w

L
D v

X[0.
X[0.
x[0..
x[0..

xX[0..

N
.0

L[N..N]

x[N..N] L[N..NJ[N..N]

find(L,N)..N] L[N..NJ[N..N]

X
:o x[@.. find(L,N)] x[find(L,N)..N]
find(L,N)] x[find(L,N)..N]
find(x,N)] x[@.. find(L[N..N],N)]
find(x,@)]®x[0.. find(x,find(L,N))]

L[N..N]

X

find(L,N)

0

9

[1,4]]

Top-down: example (depth-first)

iter O:

iter 1:
iter 2:
iter 3:

iter 4:
iter 5:

iter 6:
iter 7/:

iter 8:

iter 9:

Worklist w Generates a lot of incomplete terms while only

discards

complete terms

L
D Ln.]

L[N.
X[N.
x[0.
x[0.
x[0..
x[0..

x[0..

N]

N] L[N..NJ[N..N]

N] x[find(L,N)..N] L[N..NJ[N..N]
0] x[o.. find(L,N)] x[find(L,N)..N]

find(L,N)] x[find(L,N)..N]
find(x,N)] x[©.. find(L[N..N],N)]
find(x,0)]@ x[0.. find(x,find(L,N))]

Need to reject useless programs early in the search!

= L[N..N]
X
N ::= find(L,N)
0
[[1,4,0,6] -

[1,4]]

Top-down propagation of the spec

* |dea: once we pick the production, infer specs for subprograms

| spec |

spec1|\\\\‘ ///ﬁ%)\\\\ .///JSpeCZ‘

Now is spec1 = L or spec2 = L then discard the expansion of the set of terms of
the form f (E1, E2).

Currently : Spec = examples

Whenis TDP possible?

Depends on f!

L [1] = [1]
[1,2] > 2

cons

[1] > []
N L [1,2] > [1]

Whenis TDP possible?

Depends on !

Ne—_|[1] > 1
L'\|[1] > [1] [1,2] > 2
1] > 1 [1,2] > [2,1]
[1,2] = 2 cons
[1] =2 [] [1] > ?» | AN N
N Lo 4[1,21 > [1] [1,2] D 2 ;1]\9)

[1,2] > ?

Whenis TDP possible?

Depends on f!

Le—{[1] > [1] . e _
1] > 1 [1,2] =2 [2,1] The inverse semantics is uniquely defined

[1,2] = 2 cons

[1] > []
N g *[1,21 > [1]

Works when the function is injective!

Something less strict

L
[1] = [1,2] / Works when the function has a
“small inverse”
e orjustthe output examples

j L have a small inverse
1] > [1 | ; [1] > [1,2] |
/]

[1] = [1] \ [1] =2 [2] \ FlashFlll work uses this property for
/ \ functions over spreadsheets.

|
| [1] D [1,2] | | [11 > [1 |

22 TDP for list combinators
[Feser, Chaudhuri, Dillig "15]

map f X map (\y .y +1) [1, -3, 1, 7] = [2, -2, 2, 8]
filter f x filter (\y . vy >90) [1, -3, 1, 7] = [1, 1, 7]
fold ¥ acc x fold (\accy . acc +y) 0 [1, -3, 1, 7] = 6

fold (\accy . acc +y) @[] = ©

1

FFunctional Idioms

map f Ist = case Ist of

] ->]
head:rest -> flhead) : (map f rest)

* Applies f to every element in the list

filter p Ist = case Ist of

] -> (1
head:rest -> if p(head) then head: (filter p rest)
else (filter p rest)

* Removes any element x for which p(x) is false

foldl definition

foldl binop start Ist = case Ist of
[] -> start
head:rest -> (foldl binop (binop start head) rest)

o Apply the binary operation binop from left to right to the list

foldl definition

foldl binop start Ist = case Ist of
[] -> start
head:rest -> (foldl binop (binop start head) rest)

o Apply the binary operation binop from left to right to the list

foldl (+) &N 1:2:3:4:[]

foldl definition

foldl binop start Ist = case Ist of
[] -> start
head:rest -> (foldl binop (binop start head) rest)

o Apply the binary operation binop from left to right to the list

foldl (+) | 2:3:4:[]
0

foldl definition

foldl binop start Ist = case Ist of
[] -> start
head:rest -> (foldl binop (binop start head) rest)

o Apply the binary operation binop from left to right to the list

foldl (+) M 3:4:[]

an

foldl definition

foldl binop start Ist = case Ist of
[] -> start
head:rest -> (foldl binop (binop start head) rest)

o Apply the binary operation binop from left to right to the list

foldl (+) [4:[

\

nB
of ¢

foldl definition

foldl binop start Ist = case Ist of
[] -> start
head:rest -> (foldl binop (binop start head) rest)

o Apply the binary operation binop from left to right to the list

foldl (+) ; []

;-
g-

foldl definition

foldl binop start Ist = case Ist of
[] -> start
head:rest -> (foldl binop (binop start head) rest)

o Apply the binary operation binop from left to right to the list

9;-

EI

22 TDP for list combinators
[Feser, Chaudhuri, Dillig "15]

LQ—I [1,-3,1,7] - [2,'2)238]

l

map F X

/

X °F Implemented as a hard-coded set
‘ of rules that derive examples for

sub-program(s) given the
7 examples for the whole program
and the combinator

2% TDP for list combinators

[Feser, Chaudhuri, Dillig "15]

Le—{[1,-3,1,7] > [2,-2,2,8]

l

map F X
°F Implemented as a hard-coded set
l of rules that derive examples for
sub-program(s) given the
\y -y +1 examples for the whole program

and the combinator

2% TDP for list combinators

I
. 0] > [0]
0,1] 2 [1,0]
/ly] 2 [2,1,@]
map F x filter F x fold FLX| 22
|
F/ F F/\L

77 77

2% TDP for list combinators

0—>0
00— 1

[] = []
[e] > [@]
[0,1] = [1,0]

0,1,2] 2> [2,1,0]

fold F L x

size (Input) = size (output

?7?

2% TDP for list combinators

fold FL[] > []

| f

fold F [] [@] = [9]
F—!

fold F [] [0,1] > [1,0]
CAN

fold F [] [0,1,2] = [2,1,0]

A

fold F L x

<[], 6> > [0]
<[0], 1> = [1,0]
<[1,0], 2> > [2,1,0]

\acc y. y :

dCC

Condition abduction

Smart way to synthesize conditionals

Used in many tools (under different names):
* FlashFill [Gulwani ‘11]
* Escher [Albarghouthi et al. ‘13]
* Leon [Kneuss et al. ‘13]
* Synquid [Polikarpova et al. 16}
 EUSolver [Alur et al. ‘17]

In fact, an instance of TDP!

Fe

\ 4

1N

=

Condition abduction

NN R

N =
NN\ N7

if C then E1 else E2

_— | T

1N
N [
A2 22 I
m <4 T -

El

l

X

Types and Type based Top-down
pruning

Example

Drop the smallest element from each list

71, 75, 83 75, 83|
90, 87, 95 » |90 95
77 80]

68, 77, 80

Example

71, 75, 83 75, 83|
90, 87, 95 » [90 95]
[68, 77 80] 177 80|

How can we discover this program?

dropmins X = map dropmin X
where dropmin y = filter isNotMin y
where isNotMin z = foldl h False vy
where h t w=1t || (w < z)

Defining the language

expr = var
| Jx. expr
| filter expr expr
| map expr expr
| foldl expr expr expr
| boolExpr | arithExpr

expr = var

Ax. expr

Top-down search o
- map expr expr

foldl expr expr expr

boolExpr | arithExpr

dropmins in = expr

in— . expr filter expr exApr map expr éxpr expr fold exApr expr expr | boolExpr “arithExpr

® o o

Many of these programs can be eliminated before
having to complete them!

How?

expr = var

Ax. expr

Top-down search o
- map expr expr

foldl expr expr expr

boolExpr | arithExpr

dropmins in = expr

in— . expr filter expr exApr map exp} expr fold exApr expr expr | boolExpr “arithExpr

N

This is a fully concrete program, and
it clearly doesn’t match the examples

expr = var
- Ax. expr
Top-down search o
- map expr expr
foldl expr expr expr
boolExpr | arithExpr

dropmins in = expr

W ixexpr filter expr expr map exp} expr fold exApr exprexpr boolExpr “arithExpr

N

This program has a missing expression, but we can already tell
it will not work. Why not?

Types

Our simple language supports an infinite set of types of 3 basic

kinds
Tt := Int | Bool | k4 | T—> T
Integer Boolean List of some Function from some type

type to some other type

Types

71, 75, 83 75, 83|
90, 87, 95 » [90 95]
[68, 77 80] 177 80]

| [Unt]] [[Int]]

Input and output types are lists of lists of integers

Types

Each element in our language has a type given by a typing rule

premises

Crexpr:rt

A typing rule like the one above states that .., has type

- in a context ¢ as long as all the premises are satisfied
« A context simply tracks information about the type of any variables

Types

Each element in our language has a type given by a typing rule

C says var fity =1, epxr:t C,x :7 Fexpr:t,
has type T CF fexpr:.t, CHAX.expr:7ty — 1,
Ckvar:t

map. (Tl — T2> — [7’-1] — [TZ] fOldl (Tstart — Tyt = Tstart) — Tstart — [Tlst] — Tstart

bool Expr : Bool filter:(t — Bool) — [7] — [7] intExpr : Int

expr = var

Ax. expr

Type-based pruning o
R —————— map expr expr

foldl expr expr expr

boolExpr | arithExpr

dropmins in = expr

W ixexpr filter expr expr map exp} expr fold exApr exprexpr boolExpr “arithExpr

N

expr T, assuming x : 7 Based on the rule, this expression will have a type - - -,

AX. €Xpr:7 — 7 But we know the output must have type | 1m
There is no way those types can be made equal,
so we can discard this expression!

expr = var
_ Ax. expr
Type-based pruning o
R —————— map expr expr
foldl expr expr expr
boolExpr | arithExpr

dropmins in = expr

)(‘ . exQr filter expr exApr map exp} expr fold exApr expr expr | boolExpr “arithExpr

bool Expr : Bool :

With the same reasoning we can discard both of
these expressions

int Expr - Int They cannot possibly have the correct type

expr = var
_ Ax. expr
Type-based pruning o
R —————— map expr expr
foldl expr expr expr
boolExpr | arithExpr

dropmins in = expr

}(‘ . exQr filter expr exApr map exp} expr fold exApr expr expr | bo%xpr ’arWExpr

N

We know the output should be |m

This means the first expr must be -, -
otherwise the types won’t match

map: (Tl — Tz) — [771] — [1]

expr = var

Type-based pruning

e

W

Am.é>ér4

Ax.expr

dropmins in = expr

filter expr exApr map exp} expr fold exApr expr expr | bo%xpr

filter expr éxpr map ex"pr expr fold expr expr expr bo%xpr

AX . expr

filter expr expr
map expr expr
foldl expr expr expr
boolExpr | arithExpr

aerxpr

’aerxpr

We can quickly dismiss many possible expressions

because they cannot produce the type -, - (i

EUSolver

®* Q1: What does EUSolver use as behavioral constraints? Structural
® constraint? Search strategy?
® First-order formula
® Conditional expression grammar

® Bottom-up enumerative with OE + pruning

®* Why do they need the specification to be pointwise?

® How would it break the enumerative solver?

EUSolver

Q2: What are pruning/decomposition techniqgues EUSolver used to speed up the
search?

® Condition abduction + (special form of) equivalence reduction
Why does EUSolver keep generating additional terms when all inputs are covered?

How is the EUSolver equivalence reduction differ from observational equivalence we
saw in class?

Can we discard a term that covers a subset of the points covered by another term?

EUSolver: strengths

Divide-and-conquer (aka condition abduction)

* scales better on conditional expressions
* but: they didn't invent it

Neat application of decision tree learning
* leverages the structure of Boolean expressions

Empirically does well, especially on PBE

EUSover: weaknesses

Only applies to conditional expressions

Does not always generate the smallest expression
e in the limit, can find the smallest solution
* but unclear when to stop

Only works for pointwise specifications
* but so do ALL CEGIS-based approaches

No solution size evaluation beyond those solved by ESolver
No ablation of DT repair / branch-wise verification

Counterexample-Guided Quantifier Instantiation for Synthesis in SMT, CAV 15

Next Week.

®* Review of logic:

® Propositional and FO logic.

® Satisfiability and Validity of Logical Formulas.
®* SAT solvers.

®* SMT solvers.

® | will assign a reading for this by tomorrow!

