
CS5733 Program Synthesis
#4. Other Search Techniques

Ashish Mishra

Revisit: Optimizing the Bottom-up
Search

2

STUN at a glance

Progin
Pass

Fail

Best Effort
Synthesize

Find Better
Program

Recursive
STUN

Pass

Fail

Prog’

⊕ Prog Prog’⊕

STUN(in)

STUN at a glance
(1,2) -> 1
(2,3) -> 2
(4,3) -> 3
(8,1) -> 8

ProgIn
Pass

Fail

Best Effort
Synthesize

Find Better
Program

Recursive
STUN

Pass

Fail

Prog’

⊕ Prog Prog’⊕

Simple case: (a,b) * c => out
expr = expr + expr
 | expr * expr
 | a | b | c
 | - expr
 if(bexp) expr else expr
bexp = expr > expr | expr > 0

(5,10) * 3 => 15
(8, 11)* -1 => -11
(3,6)*4 => 12
(-3, 8) *4 => -12

a => [5,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

GrammarExamples

Level 1:

Simple case: (a,b) * c => out
expr = expr + expr
 | expr * expr
 | a | b | c
 | - expr
 if(bexp) expr else expr
bexp = expr > expr| expr > 0

(5,10) * 3 => 15
(8, 11)* -1 => -11
(3,6)*4 => 12
(-3, 8) *4 => -12

GrammarExamples

Level 1:

a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1] b+a=>[15,19,9,5] b+b=>[20,22,12,16] b+c=>[13,10,10,12] c+a=>[8,7,7,1]

c+b=>[13,10,10,12] c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] a*c=>[15,-8,12,-12] b*a=>[50,88,18,-48] b*b=>[100,121,36,64]

b*c=>[30,-11,24,32] c*a=>[15,-8,12,-12] c*b=>[30,-11,24,32] c*c=>[9,1,16,16] -a=>[-5,-8,-3,3] -b=>[-10,-11,-6,-8] -c=>[-3,1,-4,-4]

a => [5,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

Simple case: (a,b) * c => out
expr = expr + expr
 | expr * expr
 | a | b | c
 | - expr
 |if(bexp) expr else expr
bexp = expr > expr | expr > 0

(5,10) * 3 => 15
(8, 11)* -1 => -11
(3,6)*4 => 12
(-3, 8) *4 => -12

GrammarExamples

Level 1:

a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1] b+a=>[15,19,9,5] b+b=>[20,22,12,16] b+c=>[13,10,10,12] c+a=>[8,7,7,1]

c+b=>[13,10,10,12] c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] a*c=>[15,-8,12,-12] b*a=>[50,88,18,-48] b*b=>[100,121,36,64]

b*c=>[30,-11,24,32] c*a=>[15,-8,12,-12] c*b=>[30,-11,24,32] c*c=>[9,1,16,16] -a=>[-5,-8,-3,3] -b=>[-10,-11,-6,-8] -c=>[-3,1,-4,-4]

a => [5,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

Eliminate Observationally equivalent ones

Simple case: (a,b) * c => out
expr = expr + expr
 | expr * expr
 | a | b | c
 | - expr
 | if(bexp) expr else expr
bexp = expr > expr | expr > 0

(5,10) * 3 => 15
(8, 11)* -1 => -11
(3,6)*4 => 12
(-3, 8) *4 => -12

GrammarExamples

Level 1:

a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1] b+a=>[15,19,9,5] b+b=>[20,22,12,16] b+c=>[13,10,10,12] c+a=>[8,7,7,1]

c+b=>[13,10,10,12] c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] a*c=>[15,-8,12,-12] b*a=>[50,88,18,-48] b*b=>[100,121,36,64]

b*c=>[30,-11,24,32] c*a=>[15,-8,12,-12] c*b=>[30,-11,24,32] c*c=>[9,1,16,16] -a=>[-5,-8,-3,3] -b=>[-10,-11,-6,-8] -c=>[-3,1,-4,-4]

a => [5,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

Identify an expression that works for a subset of
the inputs

Simple case: (a,b) * c => out
expr = expr + expr
 | expr * expr
 | a | b | c
 | - expr
 | if(bexp) expr else expr
bexp = expr > expr| expr > 0

(5,10) * 3 => 15
(8, 11)* -1 => -11
(3,6)*4 => 12
(-3, 8) *4 => -12

GrammarExamples

Level 1:

a+a=>[10,16,6,-6] a+b=>[15,19,9,5] a+c=>[8,7,7,1] b+a=>[15,19,9,5] b+b=>[20,22,12,16] b+c=>[13,10,10,12] c+a=>[8,7,7,1]

c+b=>[13,10,10,12] c+c=>[6,-2,8,8] a*a=>[25,64,9,9] a*b=>[50,88,18,-48] a*c=>[15,-8,12,-12] b*a=>[50,88,18,-48] b*b=>
 [100,121,36,64]

b*c=>[30,-11,24,32] c*a=>[15,-8,12,-12] c*b=>[30,-11,24,32] c*c=>[9,1,16,16] -a=>[-5,-8,-3,3] -b=>[-10,-11,-6,-8] -c=>[-3,1,-4,-4]

a => [5,8,3,-3] b=>[10,11,6,8] c=>[3,-1,4,4]

Identify an expression that works for the rest
of the inputs

Simple case: (a,b) * c => out
expr = expr + expr
 | expr * expr
 | a | b | c
 | - expr
 | if(bexp) expr else expr
bexp = expr > expr| expr > 0

(5,10) * 3 => 15
(3,6)*4 => 12
(-3, 8) *4 => -12

GrammarExamples

(8, 11)* -1 => -11

a*c

b*c

a>a=[f,f,f,f] a>b=[f,f,f,f] a>c=[t,f,f,t]

b>a=[t,t,t,t] b>b=[f,f,f,f] b>c=[t,t,t,t]

c>a=[f,t,t,f] c>b=[f,f,f,f] c>c=[f,f,f,f]

a>0=[t,t,f,t] b>0=[t,t,t,t] c>0=[t,t,t,f]

𝑃1

𝑃2

Simple case: (a,b) * c => out
expr = expr + expr
 | expr * expr
 | a | b | c
 | - expr
 | if(bexp) expr else expr
bexp = expr > expr| expr > 0

(5,10) * 3 => 15
(3,6)*4 => 12
(-3, 8) *4 => -12

GrammarExamples

(8, 11)* -1 => -11

a*c

b*c

a>a=[f,f,f,f] a>b=[f,f,f,f] a>c=[t,f,f,t]

b>a=[t,t,t,t] b>b=[f,f,f,f] b>c=[t,t,t,t]

c>a=[f,t,t,f] c>b=[f,f,f,f] c>c=[f,f,f,f]

a>0=[t,t,f,t] b>0=[t,t,t,t] c>0=[t,t,t,f]

𝑃1

𝑃2

𝑃1 ⊕ 𝑃2 = 𝑖𝑓(𝑐 > 0) 𝑎 ∗ 𝑐 𝑒𝑙𝑠𝑒 𝑏 ∗ 𝑐

Another approach: Hierarchical Search

• When can we separate a problem into simpler subproblems?
• What if separating based on input examples is infeasible?
• Chenglong Wang, Alvin Cheung, Rastislav Bodik, Synthesizing Highly

Expressive SQL Queries from Input-output Examples, 2017.
• Key insight: the problem can be decomposed in a hierarchical way.

Example: SQL

Employee

Name, Dept

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Depts

Dept, Building

Sales, A1
Engineering, A2
Operations, A1

Input Output
Output

XX

Todd
Sally

Language

Rel := T | Rel , Rel
 | Select Fields from Rel where Pred

Pred := exp = exp | exp > exp | Pred & Pred

Fields := table.name as name | table.name as name, Fields

Hierarchical Search

• Key idea:
• First search for the structure of the query
• Then search for the details of the predicates

• Observation:
• If a query has the wrong structure we can see it has the wrong structure 

before instantiating the details

These structures are
also called Hypothesis
space.

Language with holes
Rel := T | Rel , Rel
 | Select Fields from Rel where

Fields := table.name as name | table.name as name,
Fields

□

Employee

Name, Dept

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Depts

Dept, Building

Sales, A1
Engineering, A2
Operations, A1

Input Query Superset of output

The key idea is to define a semantics for queries with holes that is
guaranteed to produce a superset of the records that any
instantiation of the holes may produce

Language with holes
Rel := T | Rel , Rel
 | Select Fields from Rel where

Fields := table.name as name | table.name as name,
Fields

□

Employee

Name, Dept

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Depts

Dept, Building

Sales, A1
Engineering, A2
Operations, A1

Input
Employee Todd, Sales

Joe, Engineering
Alice, Engineering
Sally, Operations

Query Superset of output

Language with holes
Rel := T | Rel , Rel
 | Select Fields from Rel where

Fields := table.name as name | table.name as name,
Fields

□

Employee

Name, Dept

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Depts

Dept, Building

Sales, A1
Engineering, A2
Operations, A1

Input
Depts Sales, A1

Engineering, A2
Operations, A1

Query Superset of output

Language with holes
Rel := T | Rel , Rel
 | Select Fields from Rel where

Fields := table.name as name | table.name as name,
Fields

□

Employee

Name, Dept

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Depts

Dept, Building

Sales, A1
Engineering, A2
Operations, A1

Input
Employee, Depts

Todd, Sales, Sales, A1
Todd, Sales, Engineering, A2
Todd, Sales, Operations, A1
Joe, Engineering, Sales, A1
Joe, Engineering, Engineering, A2
Joe, Engineering, Operations, A1
Alice, Engineering, Sales, A1
Alice, Engineering, Engineering, A2
Alice, Engineering, Engineering, A3
Sally, Operations, Sales, A1
Sally, Operations, Engineering, A2
Sally, Operations, Operations, A1

Query Superset of output

Language with holes
Rel := T | Rel , Rel
 | Select Fields from Rel where

Fields := table.name as name | table.name as name,
Fields

□

Employee

Name, Dept

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Depts

Dept, Building

Sales, A1
Engineering, A2
Operations, A1

Input
Select Name from Employee
 where □

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Query Superset of output

Language with holes
Rel := T | Rel , Rel
 | Select Fields from Rel where

Fields := table.name as name | table.name as name,
Fields

□

Employee

Name, Dept

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Depts

Dept, Building

Sales, A1
Engineering, A2
Operations, A1

Input
Select Name from
 Employee, Depts
 where □

Query Superset of output
Todd, Sales, Sales, A1
Todd, Sales, Engineering, A2
Todd, Sales, Operations, A1
Joe, Engineering, Sales, A1
Joe, Engineering, Engineering, A2
Joe, Engineering, Operations, A1
Alice, Engineering, Sales, A1
Alice, Engineering, Engineering, A2
Alice, Engineering, Engineering, A3
Sally, Operations, Sales, A1
Sally, Operations, Engineering, A2
Sally, Operations, Operations, A1

Viable Queries

Select Name from Employee
 where □

Select Name from
 Employee, Depts
 where □

Todd, Sales
Joe, Engineering
Alice, Engineering
Sally, Operations

Todd, Sales, Sales, A1
Todd, Sales, Engineering, A2
Todd, Sales, Operations, A1
Joe, Engineering, Sales, A1
Joe, Engineering, Engineering, A2
Joe, Engineering, Operations, A1
Alice, Engineering, Sales, A1
Alice, Engineering, Engineering, A2
Alice, Engineering, Engineering, A3
Sally, Operations, Sales, A1
Sally, Operations, Engineering, A2
Sally, Operations, Operations, A1

Can we find the right predicate?

This is an inductive synthesis problem too!

Viable Queries
Select Name from
 Employee, Depts
 where □

Todd, Sales, Sales, A1
Todd, Sales, Engineering, A2
Todd, Sales, Operations, A1
Joe, Engineering, Sales, A1
Joe, Engineering, Engineering, A2
Joe, Engineering, Operations, A1
Alice, Engineering, Sales, A1
Alice, Engineering, Engineering, A2
Alice, Engineering, Engineering, A3
Sally, Operations, Sales, A1
Sally, Operations, Engineering, A2
Sally, Operations, Operations, A1

Employee.Dept = Depts.Dept
& Dept=A1

Todd, Sales, Sales, A1
Sally, Operations, Operations, A1

Pruning in Top-down enumeration using specs
=

Top-down Propagation

23

Top-down vs Bottom-up: Basic Philosophy

Guiding the enumeration + Pruning using Inputs

Guiding the enumeration + Pruning using Outputs

Top-down search: reminder
Worklist w

Top-down: example (depth-first)
Worklist w

Need to reject useless programs early in the search!

Generates a lot of incomplete terms while only
discards

complete terms

Top-down propagation of the spec

• Idea: once we pick the production, infer specs for subprograms

Now is spec1 = or spec2 = then discard the expansion of the set of terms of

the form f (E1, E2).
Currently : Spec = examples

⊥ ⊥

When is TDP possible?

When is TDP possible?

When is TDP possible?

Works when the function is injective!

The inverse semantics is uniquely defined

Something less strict

FlashFIll work uses this property for
functions over spreadsheets.

: TDP for list combinatorsλ2

[Feser, Chaudhuri, Dillig ’15]

Functional Idioms

foldl definition

• foldl binop start lst = case lst of
 [] -> start
 head:rest -> (foldl binop (binop start head) rest)
• Apply the binary operation binop from left to right to the list

foldl definition

• foldl binop start lst = case lst of
 [] -> start
 head:rest -> (foldl binop (binop start head) rest)
• Apply the binary operation binop from left to right to the list

foldl (+) 1:2:3:4:[]0

foldl (+) 2:3:4:[]

foldl definition

• foldl binop start lst = case lst of
 [] -> start
 head:rest -> (foldl binop (binop start head) rest)
• Apply the binary operation binop from left to right to the list

0

+

1

foldl definition

• foldl binop start lst = case lst of
 [] -> start
 head:rest -> (foldl binop (binop start head) rest)
• Apply the binary operation binop from left to right to the list

+

+

2

0 1

foldl (+) 3:4:[]

foldl definition

• foldl binop start lst = case lst of
 [] -> start
 head:rest -> (foldl binop (binop start head) rest)
• Apply the binary operation binop from left to right to the list

+

3

+

+

2

0 1

foldl (+) 4:[]

foldl definition

• foldl binop start lst = case lst of
 [] -> start
 head:rest -> (foldl binop (binop start head) rest)
• Apply the binary operation binop from left to right to the list

+

4+

3

+

+

2

0 1

foldl (+) []

foldl definition

• foldl binop start lst = case lst of
 [] -> start
 head:rest -> (foldl binop (binop start head) rest)
• Apply the binary operation binop from left to right to the list

+

4+

3

+

+

2

0 1

: TDP for list combinatorsλ2

[Feser, Chaudhuri, Dillig ’15]

??

??

: TDP for list combinatorsλ2

[Feser, Chaudhuri, Dillig ’15]

: TDP for list combinatorsλ2

L

map F x filter F x

F F

fold F L x ??

F L

?? ??

: TDP for list combinatorsλ2

L

map F x

0 0

0 1

→
→

⊥

filter F x

F F

size (input) = size (output
⊥

fold F L x ??

F L

: TDP for list combinatorsλ2

L

fold F L x

Condition abduction

Condition abduction

Types and Type based Top-down
pruning

48

Example

• Drop the smallest element from each list

[71, 75, 83]
[90, 87, 95]
[68, 77, 80]

[75, 83]
[90 95]
[77 80]

Example

[71, 75, 83]
[90, 87, 95]
[68, 77, 80]

[75, 83]
[90 95]
[77 80]

How can we discover this program?

Defining the language

expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

Top-down search
expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 . filter expr expr map expr expr expr fold expr expr expr boolExpr arithExpr

Many of these programs can be eliminated before
having to complete them!
How?

Top-down search
expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 . filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

This is a fully concrete program, and
it clearly doesn’t match the examples

Top-down search
expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 . filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

This program has a missing expression, but we can already tell
it will not work. Why not?

Types

• Our simple language supports an infinite set of types of 3 basic
kinds

𝜏 ≔ 𝐼𝑛𝑡 | 𝐵𝑜𝑜𝑙 [𝜏] 𝜏 → 𝜏

Integer List of some
type

Function from some type
to some other type

Boolean

Types

[71, 75, 83]
[90, 87, 95]
[68, 77, 80]

[75, 83]
[90 95]
[77 80]

[[𝐼𝑛𝑡]] [[𝐼𝑛𝑡]]

Input and output types are lists of lists of integers

Types

• Each element in our language has a type given by a typing rule

• A typing rule like the one above states that has type
 in a context as long as all the premises are satisfied
• A context simply tracks information about the type of any variables

𝑒𝑥𝑝𝑟

𝜏 𝐶

𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠
𝐶 ⊢ 𝑒𝑥𝑝𝑟 :𝜏

Types

• Each element in our language has a type given by a typing rule

𝐶 says var
h𝑎𝑠 𝑡𝑦𝑝𝑒 𝜏
𝐶 ⊢ var :𝜏

𝐶, 𝑥 :𝜏1 ⊢ 𝑒𝑥𝑝𝑟 :𝜏2
𝐶 ⊢ 𝜆 x . expr :𝜏1 → 𝜏2

𝑓𝑖𝑙𝑡𝑒𝑟: (𝜏 → 𝐵𝑜𝑜𝑙) → [𝜏] → [𝜏]

𝑚𝑎𝑝:(𝜏1 → 𝜏2) → [𝜏1] → [𝜏2] 𝑓𝑜𝑙𝑑𝑙:(𝜏𝑠𝑡𝑎𝑟𝑡 → 𝜏𝑙𝑠𝑡 → 𝜏𝑠𝑡𝑎𝑟𝑡) → 𝜏𝑠𝑡𝑎𝑟𝑡 → [𝜏𝑙𝑠𝑡] → 𝜏𝑠𝑡𝑎𝑟𝑡

𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟 :𝐵𝑜𝑜𝑙 𝑖𝑛𝑡𝐸𝑥𝑝𝑟 :𝐼𝑛𝑡

𝑓:𝜏1 → 𝜏2 𝑒𝑝𝑥𝑟:𝜏1

𝐶 ⊢ 𝑓 𝑒𝑥𝑝𝑟:𝜏2

Type-based pruning
expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 . filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

𝑒𝑥𝑝𝑟 :𝜏2 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑥 :𝜏1

𝜆 x . expr :𝜏1 → 𝜏2
Based on the rule, this expression will have a type
But we know the output must have type
There is no way those types can be made equal,
so we can discard this expression!

𝜏1 → 𝜏2

[[𝐼𝑛𝑡]]

Type-based pruning
expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 . filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

With the same reasoning we can discard both of
these expressions
They cannot possibly have the correct type

𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟 :𝐵𝑜𝑜𝑙

𝑖𝑛𝑡𝐸𝑥𝑝𝑟 :𝐼𝑛𝑡

Type-based pruning
expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 . filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

𝑚𝑎𝑝:(𝜏1 → 𝜏2) → [𝜏1] → [𝜏2]
We know the output should be
This means the first expr must be
otherwise the types won’t match

[[𝐼𝑛𝑡]]

𝜏1 → [𝐼𝑛𝑡]

Type-based pruning
expr = var
 |
 | filter expr expr
 | map expr expr
 | foldl expr expr expr
 | boolExpr | arithExpr

𝜆𝑥 . 𝑒𝑥𝑝𝑟

dropmins in = expr

in expr𝜆 𝑥 . filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

in expr𝜆 𝑥 . filter expr expr map expr expr fold expr expr expr boolExpr arithExpr

We can quickly dismiss many possible expressions
because they cannot produce the type 𝜏1 → [𝐼𝑛𝑡]

The Paper

63

EUSolver

• Q1: What does EUSolver use as behavioral constraints? Structural
• constraint? Search strategy?

• First-order formula

• Conditional expression grammar

• Bottom-up enumerative with OE + pruning

• Why do they need the specification to be pointwise?
• How would it break the enumerative solver?

EUSolver

• Q2: What are pruning/decomposition techniques EUSolver used to speed up the
search?
• Condition abduction + (special form of) equivalence reduction

• Why does EUSolver keep generating additional terms when all inputs are covered?
• How is the EUSolver equivalence reduction differ from observational equivalence we

saw in class?
• Can we discard a term that covers a subset of the points covered by another term?

EUSolver: strengths

EUSover: weaknesses

Counterexample-Guided Quantifier Instantiation for Synthesis in SMT, CAV ’15

Next Week.

• Review of logic:
• Propositional and FO logic.
• Satisfiability and Validity of Logical Formulas.

• SAT solvers.
• SMT solvers.

• I will assign a reading for this by tomorrow!

End

69

