CS57335 Program Synthesis

#3.0ptimizing the Enumerative Search

Ashish Mishra

Logistics

® Reviews:

® Due tomorrow
® Projects:
® Topics: due next Thursday

® Other questions?

Academic paper reading workshop... on steroids

Abstract and Introduction. Sec. 0 and 1.

Overview:

® Understand the Problem and the Solution. Sec. 2 and 3.

Technical Discussions: Sec. 4 - ?X (Anything Before Evaluation)
® Dig deeper into the Solution

® and/or formally understand the problem.

Proofs/Evaluation/Implementation: Sec. ?X
® Proofs for theorems — Typically in PL Papers —-

® Evaluations of the ideas explained in Sec 2&3 and Discussed in Sec 4-?X
®* Comparison with an appropriate baseline.

®* Sometimes other specific RQs

Conclusion, Related work, Future works.

EUSolver as an Example

SyGuS Continue...

Enumerative Search

Explicit / Exhaustive Search

ldea: Enumerate programs from the
grammar one by one and test them on the
examples

Challenge: How do we systematically
enumerate all programs?

top-down vs bottom-up

reduce (mapinAx.x+5) 0Ax.Ay.x +y

reduce

Bottom Up map 0 Ax.

in Ax. Ay.

FP Trivia:
reduce (map in Ax.x+35) 0 (Ax.Ay.(x +y))

functions : map, reduce

Top Down

Top-down enumeration: search space

Search space is a tree where

L ::= L[N..N] |
. X
* nodes are whole incomplete programs N ::= find(L,N) |
(¢ n " 9 0
* edges are “derives in one step
[> [1,4]]

/\

L[N...N]

“

X[N..N] L[N..N]J[N..N]

[]‘/ \[fAcu)]\‘
X|0..N X|find (L,N)..N

X[0..0] X[O..find (L,N)]

“ / ~

X[O..find(x, N)] X[O..find (L[N..N],N)] \

Top-down enumeration = traversing the tree

® Search tree can be traversed: L ::= L[N..N] |
® depth-first (for fixed max depth) X
* breadth-first N = glnd(L:N) |

® |ater in class: best-first

® General algorithm: [[1,4 2> [1,4]]
® Maintain a worklist of incomplete programs
® Initialize with the start non-terminal

®* Expand left-most non-terminal using all productions

Top-down Algorithm

nonterminals rules (productions)

alphabe\ / starting nonterminal
top-doWﬁ?ZZ, N, R, S>, [1 =2 0]):

wl := [S]

while (wl != []): L ::= L[N..N] |
T:= wl.dequeue() X
if (complete(t) A T([1]) = [o]): N ::= find(L,N) |

return T y
wl.enqueue(unroll(t))
\ depth- or breadth-first [[1,4,0,6] > [1,4]]
unroll(t): |
Wl’ 1= [] depending on where you enqueue

A := left-most non-term in T
forall (A - rhs) in R:

T’ = Tt[A -> rhs]

if lexceeds bound(t’): wl’ += T’

return wl’ <-\ | |
can impose bounds on depth/size

Top-down: example (depth-first)

iter O:

iter 1:
iter 2:
iter 3:

iter 4:
iter 5:

iter 6:
iter /:

iter &:

iter 9:

Worklist w

L
D v

X[0.
X[0.
x[0..
x[0..

xX[0..

N
.0

L[N..N]

x[N..N] L[N..NJ[N..N]

find(L,N)..N] L[N..NJ[N..N]

X
:Q x[@.. find(L,N)] x[find(L,N)..N]
find(L,N)] x[find(L,N)..N]
find(x,N)] x[@.. find(L[N..N],N)]
find(x,@)]®x[6.. find(x,find(L,N))]

L[N..N]

X

find(L,N)

0

9

[1,4]]

Bottom-up enumeration

The dynamic programming approach: S i‘[’;t(;% {
®* Maintain a bank of complete programs L + L |
®* Combine programs in the bank into larger)[(N] |
programs using productions N 2:= ;iNd(L,N) |

[2> [1,4]]

Bottom-up: algorithm (take 1)

nonterminals rules (productions)

alphabe\ / starting nonterminal .
—— — L o o

B = sort(L) |
bottom-up (<2, N, R, S>, [1 =2 o0]): L[N..N] \
bank := {) L+ L |
for d in [0..]: [N] |
forall (A - rhs) in R:
forall t in new-terms(A->rhs, d, bank): o *
if (A=5S At([i]) = [o]): N ::= find(L,N) |
return t 0
bank += t; [L_ 0 J - [1) 4]]

new-terms(A > o(A,.A), d, bank):
if (d = 0 A k = 0) yield o
else forall <t,,..,t,> in bankX:
if A, ->* t,: yield o(t,,..,t,)

$

~ inefficient, better index bank by non-terminal!

Bottom-up: algorithm (take 2)

nonterminals rules (productions)

alphabe\ / starting nonterminal .
—— — L e o

B = sort(L) |
bottom-up (<%, N, R, S>, [1 =2 o]): L[N..N] |
bank := {} L + L |
for d in [0O..]: [N] |
forall (A - rhs) in R:
forall t in new-terms(A->rhs, d, bank): el il ‘
if (A =5 At([i]) = [o]): 1= Find(L,N)
return t 0
bank += t; [[1,4 1 => [1,4]]

new-terms(A — o(A;...A,), d, bank):

if (d=0 A k=0) yield ¢

else forall <t;...t, > inbank[A] X ...bank[A_,]]:
yield o(t 1,....t k)

inefficient, generating same terms again and again!
better index bank by depth

Bottom-up: algorithm (take 3)

nonterminals rules (productions)

alphabe\ / starting nonterminal .
—— — L e o

B = sort(L) |
bottom-up (<%, N, R, S>, [1 =2 0o]): L[N..N] |
bank := {} L + L |
for d in [0..]: [N] |
forall (A - rhs) in R:
forall t in new-terms(A>rhs, d, bank): el il ‘
if (A =5 At([i]) = [o]): +:= find(L,N)
return t 0
bank += 1; [[1,4,0,6] > [1,4]]

new-terms(A 2 o(A...A.), d, bank):
if (d =0 A k =0) yield o
else forall <«d,,..,d > in [0..d-1]% s.t. max(d,,..,d,) = d-1:
forall <«t,,..,t, > in bank[A,,d,] x...x bank[A,,d,]:
yield o(t,,..,t,)

Bottom-up: example

Program bank

L ::= sort(L) |
0. y = L[N..N]J |
L + L |
[N] |
d=1 sort(x) x + x x[0..0] [0] N ::=);ind(L,N) |
find(x,0) ’
[[1,4,0,6] > [1,4]]
d=2:

sort(sort(x)) sort(x[0..0]) sort(x + x)
sort([0]) x + (x + x) x + [0] sort(x) + X
x[0..0] + x (x + Xx) + x [0] + x Xx + x[0..0]
X + sort(x) x[0..find(x,0)

Explicit search from grammars

® Limitations:
® Only scales to very small programs

® Unsuitable for programs with unknown constants
® A single unknown 32-bit constant makes the problem intractable

® Hard to deal with context dependent semantics

® Example system:
®* Recursive Program Synthesis [Albarghouthi et al., CAV 2013]

Enumerative search

L ::= sort(L) |

L [N..N] |

L+ L |

[N] |

bottom-up N :o= zind(L,N) | top-down

0
X 0 L
sort(x) x[0..0] x + x [0] x sort(L) L[N..N] L+ L [N]
find(x,0)
sort(sort(x)) sort(x[0..0]) sort(x) sort(sort(L)) sort([N])
sort(x + x) sort([0]) sort(L[N..N]) sort(L + L)

x[0..find(x,0)] ... X[N..N] (sort L)[N..N]

Bottom-up vs top-down

Top-down Bottom-up

Smaller to larger depth

* Has to explore between 3*10° and 10%3 programs to find
sort(x[0..find(x, ©0)]) + [0] (depth6)

Candidates are whole but might Candidates are complete but
not be complete might not be whole
 Cannot always run on inputs e Can always run on inputs

* Can always relate to outputs (?) * Cannot always relate to outputs

How to make it scale

Prune Prioritize
Discard useless subprograms Explore more promising

candidates first

p = { [@][N..N] |
X[N..N] , «—
}

dequeue
this first

m* (N - 1)

Equivalent terms
Useless depends on

the problem and the Terms guaranteed not
domain. to lead to a solution

Now this : Optimizing the Search

When can we discard a program?

redundant infeasible

L [1 > []
L + L
SO X)) J/

/ \
/sort(x), Ibﬂ’4f1f

Equivalence reduction Top-down propagation

Equivalent programs

X ©
sort(x) x[0..0] x + x [0] find(x,0)
L ::= sort(L) |
L[N..N] } Cort sort(sort(x)) sort(x + x) sort(x[0..0])
l + | ottom_up , ,
N ‘ I sor?([e]) x[O.:flnd(x,e)] X[find(x,0)..0]
y X[find(x,0)..find(x,0)] sort(x)[0..0]
N ::= find(L,N) | x[0..0][0..0] (x + x)[0..0] [0][0..0]
0 X + (X + X) x + [0] sort(x) + x x[0..0] + X

(x + X) + X [0] + x x + x[0..0] x + sort(x)

Equivalent programs

sort(L)
L[N..N]J
L + L

[N]
X

find(L,N)
0

bottom up
EEE——

X o
sort(x)| x[@..0] x + X find(x,0)

sort(sort(x))| sort(x + x) |sort(x[0..0])|
sort([@])| x[@..find(x,0)] x[find(x,0)..0]
X[find(x,0)..find(x,0)]| [sort(x)[0..0]
x[@..0][0..0] [(x + x)[0..0][[[e][e..0]

X + (x + x)[x + [0] sort(x) + x[x[0..0] + X
I(x + x) + x| [0] + x x + x[0..0]] x + sort(x)

Equivalent programs

X o
sort(x)| x[0..0] x + x find(x,0)

L ::= sort(L) |
L[N..N] |
o ‘ potton up sort(x + X)
- ‘ x[0..find(x,0)]
X
N ::= find(L,N) |
0 X + (x + x)| x + [@] sort(x) + x

[6] + X X + sort(x)

Bottom-up + equivalence reduction

bottom-up (<2, N, R, S>, [1 =2 0o]):
bank[A,d] := {} forall A, d
for d in [0..]:
forall (A - rhs) in R:
forall t in new-terms(A->rhs, d, bank):
if (A =S At([1]) = [o]):
return t

if (forall t’ in bank[A,.]: lequiv(t,t’)):
bank[A,d] += t

new-terms(A 2> o(A,.A), d, bank):
if (d = 0 A k = 0) yield o
else forall «d,,..,d,> in [0..d-1]% s.t. max(d,,..,d,) = d-1:
forall <t,,..,t,> in bank[A,,d,] x...x bank[A,,d_]:
yield o(t,,..,t,)

Bottom-up + equivalence reduction

bottom-up (<2, N, R, S>, [1 = 0]): How do we implement equiv?

bank[A,d] := {} forall A, d
for d in [0..]:
forall (A - rhs) in R: :

n general undecidable

~or SyGuS problems: expensive

forall t in new-terms(A->rhs, d, bank): * Doing expensive checks on every

if (A =S At([1]) = [0o]):
return t

if (forall t’ in bank[A,.]: l'equiv(t,t’)):

bank[A,d] += t

new-terms(A - o(A,.A.), d, bank):
if (d =0 A k =0) yield o
else forall <«d,,..,d,> in [0..d-1]% s.t. max(d,,..,d,)

yield o(t,,..,t,)

candidate defeats the purpose of
pruning the space!

= d-1:
forall <t,,..,t,> in bank[A,,d,] x...x bank[A,,d,]:

Observational equivalence

bottom-up (<2, N, R, S>, [1 =2 0o]):

{ ...} [[e] = [@]]
equiv(t, t’) { X ©
return t([i]) = t’([1])
} sort(x) x[0..0] Xx + X [0] find(x,0)
In PBE, all we care about is sort(x + Xx)
equivalence on the given inputs! x[@..find(x,0)]

* easy to check efficiently

* even more programs are equivalent X + (X + x) x + [@] sort(x) + x
[0] + X X + sort(x)

Observational equivalence

bottom-up (<2, N, R, S>, [1 =2 0]):

o) [[0] > [e]]
equiv(t, t’) { X 9
return t([i]) = ’([1])
} find(x,0)|

x[@..find(x,0)]]

X + (x + x) x_+ [0]|lsort(x) + X
‘[0] + ﬂ R + sort(xﬂ

Observational equivalence

bottom-up (<2, N, R, S>, [1 =2 0]):

poton- [[0] > [0]]
equiv(t, t’) { H @
return t([i]) = t’([1])
} < x

how to implement the reduction
efficiently?

X + (X + X)

Observational equivalence

Proposed simultaneously in two papers:

 Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: TRANSIT:
specifying protocols with concolic snippets. PLDI"13

* Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV’13

Variations used in most bottom-up PBE tools:
* ESolver (baseline SyGuS enumerative solver)
e EUSolver [Alur et al. TACAS‘17]
* Probe [Barke et al. OOPSLA’20]
 TFCoder [Shi et al. TOPLAS 22]

User-specified equations
[Smith, Albarghouthi: VMCAI'19]

Equations "
Term-rewriting system (TRS)

derived

sort(sort(1l)) = sort(l) ; automatically 1. sort(sort(l)) = sort(l)

(11 + 12) + 13 = 11 + (12 + 13) — % 2. (11 +12) + 13 2> 11 + (12 + 13)
n=n+20 3.n + 0 2 n
4

n+m=m+n . n+m=2>,,,m+n

X 0
sort(x) x[0..0] x + x [@] find(x,0)

SO X)) rule 1 applies, notin normal form

Built-in equivalences

For a predefined set of operations, equivalence reduction can be
hard-coded in the tool or built into the grammar

L ::= sort(L) | L ::=11 | L1 +1L
L[N..N] | L1 ::= sort(L) |
L + L | \ L[N..N] |
[N] | [N] |
X X

N ::= find(L,N) | N ::= find(L,N) |

0 0

Built-in equivalences

Used by:

* \?[Feser et al.’15]
* Leon [Kneuss et al.”13]

Leon’s implementation using attribute grammars described in:

* Koukoutos, Kneuss, Kuncak: An Update on Deductive Synthesis and
Repair in the Leon tool [SYNT'16]

Equivalence reduction: comparison

Observational

* \ery general, no user input required

* Finds more equivalences

* Can be costly (with many examples, large outputs)

* |f new examples are added, has to restart the search

User-specified
* Fast
* Requires equations

Built-in
* Even faster
e Restricted to built-in operators
* Only certain symmetries can be eliminated by modifying the grammar

Q1: Can any of them apply to top-down?
Q2: Can any of them apply beyond PBE?

Other Strategies: Synthesis Through Unification

® |ldea: Solve many simpler problems, combine their solutions.

® Rajeev Alur, Pavol Cerny, Arjun Radhakrishna, Synthesis Through Unification, 2015

® STUN provides a general framework for breaking down a global search into a series
of local searches.

