CS5733 Program Synthesis #3.Optimizing the Enumerative Search

Ashish Mishra

Logistics

- Reviews:
 - Due tomorrow
- Projects:
 - Topics: due next Thursday
- Other questions?

Academic paper reading workshop... on steroids

- Abstract and Introduction. Sec. 0 and 1.
- Overview:
 - Understand the Problem and the Solution. Sec. 2 and 3.
- Technical Discussions: Sec. 4 ?X (Anything Before Evaluation)
 - Dig deeper into the Solution
 - and/or formally understand the problem.
- Proofs/Evaluation/Implementation: Sec. ?X
 - Proofs for theorems Typically in PL Papers —-
 - Evaluations of the ideas explained in Sec 2&3 and Discussed in Sec 4-?X
 - Comparison with an appropriate baseline.
 - Sometimes other specific RQs
- Conclusion, Related work, Future works.

EUSolver as an Example

SyGuS Continue...

Enumerative Search

Explicit / Exhaustive Search

Idea: Enumerate programs from the grammar one by one and test them on the examples

Challenge: How do we systematically enumerate all programs?

top-down vs bottom-up

FP Trivia:

reduce (map in $\lambda x \cdot x + 5$) 0 ($\lambda x \cdot \lambda y \cdot (x + y)$) functions : map, reduce

Top-down enumeration: search space

Search space is a tree where

- nodes are whole incomplete programs
- edges are "derives in one step"

 $[[1,4,0,6] \rightarrow [1,4]]$

Top-down enumeration = traversing the tree

Search tree can be traversed:

- depth-first (for fixed max depth)
- breadth-first
- Iater in class: best-first
- General algorithm:
 - Maintain a worklist of incomplete programs
 - Initialize with the start non-terminal
 - Expand left-most non-terminal using all productions

L ::= L[N..N]X N ::= find(L,N)0 $[[1,4,0,6] \rightarrow [1,4]]$

Top-down Algorithm

```
nonterminals rules (productions)
alphabet starting nonterminal top-down(\langle \Sigma, N, R, S \rangle, [i \rightarrow o]):
  wl := [S]
  while (wl != []):
     τ:= wl.dequeue()
     if (complete(\tau) \land \tau([i]) = [o]):
        return τ
     wl.enqueue(unroll(\tau))
                                   depth- or breadth-first
unroll(\tau):
                             depending on where you enqueue
  wl' := []
  A := left-most non-term in \tau
  forall (A \rightarrow rhs) in R:
     \tau' = \tau[A \rightarrow rhs]
     if !exceeds_bound(τ'): wl' += τ'
  return wl'
```

L ::= L[N..N]Χ N ::= find(L,N)0 $[[1,4,0,6] \rightarrow [1,4]]$

can impose bounds on depth/size

Top-down: example (depth-first)

Worklist w

$[[1,4,0,6] \rightarrow [1,4]]$

Bottom-up enumeration

The dynamic programming approach:

- Maintain a bank of complete programs
- Combine programs in the bank into larger programs using productions

L ::= sort(L)L[N..N]L + L[N] X N ::= find(L,N)0 $[[1,4,0,6] \rightarrow [1,4]]$

Bottom-up: algorithm (take 1)

nonterminals rules (productions) alphabet starting nonterminal bottom-up $(\langle \Sigma, N, R, S\rangle, [i \rightarrow o])$: bank := {} for d in [0..]: forall (A \rightarrow rhs) in R: forall t in new-terms($A \rightarrow$ rhs, d, bank): if (A = S At([i]) = [0]): return t bank += t; new-terms(A $\rightarrow \sigma(A_1...A_k)$, d, bank): if (d - 0) = 0 k = 0 yiald a

L ::= sort(L)L[N..N] L + L X N ::= find(L,N)0 $[[1,4,0,6] \rightarrow [1,4]]$

inefficient, better index bank by non-terminal!

Bottom-up: algorithm (take 2)

nonterminals rules (productions) alphabet starting nonterminal bottom-up (< Σ , N, R, S>, [$i \rightarrow o$]): bank := {} for d in [0..]: forall (A \rightarrow rhs) in R: forall t in new-terms($A \rightarrow$ rhs, d, bank): $if (A = S \land t([i]) = [o]):$ return t bank += t;

new-terms(A $\rightarrow \sigma(A_1 \dots A_k)$, d, bank):

if (d = 0 \land k = 0) yield σ

else forall $\langle t_1 \dots t_k \rangle$ in bank $[A_1] \times \dots$ bank $[A_k]$]: **yield** σ(t 1,...,t k)

L ::= sort(L) L[N..N] L + L X N ::= find(L,N)0 $[[1,4,0,6] \rightarrow [1,4]]$

inefficient, generating same terms again and again! better index bank by depth

Bottom-up: algorithm (take 3)

nonterminals rules (productions) alphabet starting nonterminal bottom-up (< Σ , N, R, S>, [$i \rightarrow o$]): bank := {} for d in [0..]: forall (A \rightarrow rhs) in R: forall t in new-terms($A \rightarrow$ rhs, d, bank): $if (A = S \land t([i]) = [o]):$ return t bank += t;

new-terms(A $\rightarrow \sigma(A_1...A_k)$, d, bank): if $(d = 0 \land k = 0)$ yield σ **else forall** $(d_1, ..., d_k)$ **in** $[0...d-1]^k$ s **forall** $\langle t_1, ..., t_k \rangle$ in bank[A₁, d₁] yield $\sigma(t_1,...,t_k)$

L ::= sort(L)L[N.N] L + L Χ N ::= find(L,N)0 $[[1,4,0,6] \rightarrow [1,4]]$

.t.
$$max(d_1, ..., d_k) = d-1:$$

| × ... × bank[A_k, d_k]:

Bottom-up: example

Program bank

d = 2:

- d=0: x 0
 d=1: sort(x) x + x x[0..0]
 find(x,0)
 - sort(sort(x)) sort(x[0... sort([0]) x + (x + x) x + x[0..0] + x (x + x) + x x + sort(x) x[0..find(x,0)

$$\begin{bmatrix} 0 \end{bmatrix} \\ L ::= sort(L) \\ L[N..N] \\ L + L \\ [N] \\ N ::= find(L,N) \\ 0 \\ [[1,4,0,6] \rightarrow [1,4]] \\ 0]) sort(x + x) \\ + [0] sort(x) + x \\ [0] + x x + x[0..0] \\ 0) \end{bmatrix}$$

Explicit search from grammars

- Limitations:
 - Only scales to very small programs
 - Unsuitable for programs with unknown constants
 - A single unknown 32-bit constant makes the problem intractable
 - Hard to deal with context dependent semantics
- Example system:
 - Recursive Program Synthesis [Albarghouthi et al., CAV 2013]

Enumerative search

Bottom-up vs top-down

Top-down

Smaller to larger depth

Candidates are whole but might not be complete

- Cannot always run on inputs
- Can always relate to outputs (?)

Bottom-up

```
• Has to explore between 3*10<sup>9</sup> and 10<sup>23</sup> programs to find
      sort(x[0..find(x, 0)]) + [0] (depth 6)
```

Candidates are complete but might not be whole

- Can always run on inputs
- Cannot always relate to outputs

How to make it scale

Prune Discard useless subprograms

Useless depends on the problem and the domain.

Prioritize

Explore more promising candidates first

Equivalent terms

Terms guaranteed not to lead to a solution

Now this : Optimizing the Search

When can we discard a program?

redundant

infeasible

Equivalent programs

<mark>x</mark> 0

. . .

sort(x) x[0..0] x + x [0] find(x,0)

sort(sort(x)) sort(x + x) sort(x[0..0])
sort([0]) x[0..find(x,0)] x[find(x,0)..0]
x[find(x,0)..find(x,0)] sort(x)[0..0]
x[0..0][0..0] (x + x)[0..0] [0][0..0]
x + (x + x) x + [0] sort(x) + x x[0..0] + x
(x + x) + x [0] + x x + x[0..0] x + sort(x)

Equivalent programs

• • •

Equivalent programs

. . .

0 sort(x) x[0..0] x + x [0] find(x,0) sort(x + x)x[0..find(x,0)]• . . .

$$x + (x + x) x + [0] sort(x) + x$$

[0] + x x + sort(x)

Bottom-up + equivalence reduction

bottom-up ($\langle \Sigma, N, R, S \rangle$, $[i \rightarrow o]$): $bank[A,d] := \{\} forall A, d$ for d in [0..]: forall (A \rightarrow rhs) in R: forall t in new-terms($A \rightarrow$ rhs, d, bank): $if (A = S \land t([i]) = [o]):$ <u>return t</u> if (forall t' in bank[A,.]: !equiv(t,t')): bank[A,d] += t

new-terms(A $\rightarrow \sigma(A_1...A_k)$, d, bank): if $(d = 0 \land k = 0)$ yield σ else forall $(d_1, ..., d_k)$ in $[0...d-1]^k$ s.t. max $(d_1, ..., d_k) = d-1$: **forall** $\langle t_1, ..., t_k \rangle$ in bank $[A_1, d_1] \times ... \times$ bank $[A_k, d_k]$: yield $\sigma(t_1,...,t_k)$

Bottom-up + equivalence reduction

```
bottom-up (<\Sigma, N, R, S>, [i \rightarrow o]):
  bank[A,d] := {} forall A, d
  for d in [0..]:
     forall (A \rightarrow rhs) in R:
       forall t in new-terms(A \rightarrowrhs, d, bank):
          if (A = S \land t([i]) = [o]):
            return t
          if (forall t' in bank[A,.]: !equiv(t,t')):
            bank[A,d] += t
new-terms(A \rightarrow \sigma(A_1...A_k), d, bank):
 if (d = 0 \land k = 0) yield \sigma
 else forall \langle d_1, ..., d_k \rangle in [0...d-1]^k s.t. max(d_1, ..., d_k) = d-1:
```

forall
$$\langle t_1, ..., t_k \rangle$$
 in bank $[A_1, d_1] \times ... \times$
yield $\sigma(t_1, ..., t_k)$

How do we implement equiv?

- In general undecidable
- For SyGuS problems: expensive
- Doing expensive checks on every candidate defeats the purpose of pruning the space!

 $bank[A_k, d_k]$:

```
bottom-up (<Σ, N, R, S>, [i → o]):
{ ... }
equiv(t, t') {
  return t([i]) = t'([i])
}
```

In PBE, all we care about is equivalence on the given inputs!

- easy to check efficiently
- even more programs are equivalent x + (x + x) x + [0] sort(x) + x
 [0] + x x + sort(x)

 $[[0] \rightarrow [0]]$ x 0
sort(x) x[0..0] x + x [0] find(x,0)

sort(x + x)
x[0..find(x,0)]

```
bottom-up (<Σ, N, R, S>, [i → o]):
{ ... }
equiv(t, t') {
  return t([i]) = t'([i])
}
```



```
bottom-up (<Σ, N, R, S>, [i → o]):
{ ... }
equiv(t, t') {
  return t([i]) = t'([i])
}
```

how to implement the reduction efficiently?

x + (x + x)

Proposed simultaneously in two papers:

- Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: TRANSIT: specifying protocols with concolic snippets. PLDI'13
- Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV'13

Variations used in most bottom-up PBE tools:

- ESolver (baseline SyGuS enumerative solver)
- EUSolver [Alur et al. TACAS'17]
- Probe [Barke et al. OOPSLA'20]
- TFCoder [Shi et al. TOPLAS'22]

User-specified equations [Smith, Albarghouthi: VMCAI'19]

Equations

sort(sort(1)) = sort(1)
(l1 + l2) + l3 = l1 + (l2 + l3)
n = n + 0
n + m = m + n

<mark>x</mark> 0

sort(x) x[0..0] x + x [0] find(x,0)
sort(sort(x)) rule 1 applies, not in normal form

Built-in equivalences

For a predefined set of operations, equivalence reduction can be hard-coded in the tool or built into the grammar

L ::= sort(L) L[N..N]L + L[N] X N ::= find(L,N) 0

```
L ::= L1 | L1 + L
L1 ::= sort(L)
      L[N..N]
      Χ
N ::= find(L,N)
     0
```

Built-in equivalences

Used by:

- λ^2 [Feser et al.'15]
- Leon [Kneuss et al.'13]

Leon's implementation using attribute grammars described in:
Koukoutos, Kneuss, Kuncak: An Update on Deductive Synthesis and

 Koukoutos, Kneuss, Kuncak: An Ul Repair in the Leon tool [SYNT'16]

Equivalence reduction: comparison

Observational

- Very general, no user input required
- Finds more equivalences
- Can be costly (with many examples, large outputs)
- If new examples are added, has to restart the search

User-specified

- Fast
- Requires equations
- Built-in
 - Even faster
 - Restricted to built-in operators
 - Only certain symmetries can be eliminated by modifying the grammar

Q1: Can any of them apply to top-down? Q2: Can any of them apply beyond PBE?

Other Strategies: Synthesis Through Unification

- Idea: Solve many simpler problems, combine their solutions.
- Rajeev Alur, Pavol Černý, Arjun Radhakrishna, Synthesis Through Unification, 2015
- STUN provides a general framework for breaking down a global search into a series of local searches.

