CS5733 Program Synthesis #3.Optimizing the Enumerative Search

Ashish Mishra

Logistics

- Reviews:
	- Due tomorrow
- Projects:
	- Topics: due next Thursday
- Other questions?

Academic paper reading workshop… on steroids

- Abstract and Introduction. Sec. 0 and 1.
- Overview:
	- Understand the Problem and the Solution. Sec. 2 and 3.
- Technical Discussions: Sec. 4 ?X (Anything Before Evaluation)
	- Dig deeper into the Solution
	- and/or formally understand the problem.
- Proofs/Evaluation/Implementation: Sec. ?X
	- Proofs for theorems Typically in PL Papers —-
	- Evaluations of the ideas explained in Sec 2&3 and Discussed in Sec 4-?X
		- Comparison with an appropriate baseline.
	- Sometimes other specific RQs
- Conclusion, Related work, Future works.

EUSolver as an Example

SyGuS Continue...

Enumerative Search

Idea: Enumerate programs from the grammar one by one and test them on the examples

> functions : map, reduce reduce (map in $\lambda x \cdot x + 5$) 0 ($\lambda x \cdot \lambda y \cdot (x + y)$)

Challenge: How do we systematically enumerate all programs?

top-down vs bottom-up

reduce (map in λ x. x + 5) 0 λ x. λ y. x + y

=

Explicit / Exhaustive Search

FP Trivia:

Top-down enumeration: search space

Search space is a tree where

- nodes are whole incomplete programs
- edges are "derives in one step"

 $[1,4,8,6] \rightarrow [1,4]$

Top-down enumeration = traversing the tree

• Search tree can be traversed:

- depth-first (for fixed max depth)
- breadth-first
- later in class: best-first
- General algorithm:
	- Maintain a worklist of incomplete programs
	- Initialize with the start non-terminal
	- Expand left-most non-terminal using all productions

$L :: = L[N..N]$ X. $N : := find(L, N)$ 0 $[[1,4,8,6] \rightarrow [1,4]]$

Top-down Algorithm

nonterminals rules (productions) alphabet

top-down(< Σ , N, R, S , $[1 \rightarrow 0]$): $w1 := [S]$ while $(wl := []):$ $\tau := w1.dequeue()$ if $(\text{complete}(\tau) \wedge \tau([\iota]) = [\circ]):$ return t wl .enqueue(unro $ll(\tau)$) depth- or breadth-first $unroll(t)$: depending on where you enqueue $w1' := []$ $A := left-most$ non-term in τ forall $(A \rightarrow rhs)$ in R: $\tau' = \tau[A \rightarrow rhs]$ if $lexceeds_bound(v')$: wl' += τ' return wl'

 $L :: = L[N..N]$ \mathbf{x} N ::= find(L,N) | 0 $[1,4,8,6] \rightarrow [1,4]$

can impose bounds on depth/size

Top-down: example (depth-first)

Worklist w

$[1,4,0,6] \rightarrow [1,4]$

Bottom-up enumeration

The dynamic programming approach:

- Maintain a bank of complete programs
- Combine programs in the bank into larger programs using productions

 $L ::= sort(L)$ $L[N..N]$ $L + L$ $\lceil N \rceil$ \mathbf{x} N ::= find(L,N) 0 $[1,4,0,6] \rightarrow [1,4]$

Bottom-up: algorithm (take 1)

nonterminals rules (productions) alphabet bottom-up $(\langle \Sigma, N, R, S \rangle, [i \rightarrow o]):$ bank := $\{\}$ for d in $[0..]$: forall $(A \rightarrow rhs)$ in R: forall t in new-terms($A\rightarrow$ rhs, d, bank): if $(A = S \wedge t([i]) = [o]):$ return t bank $+=$ t; new-terms($A \rightarrow \sigma(A_1...A_k)$, d, bank): $if (d = a \wedge k = a)$ viald a

$$
\begin{array}{ll}\n\text{else for all } < t_1, \ldots, t_k > \text{ in bank}^k: \\
\text{else for all } < t_1, \ldots, t_k > \text{ in bank}^k: \\
\text{if } A_i >^* t_i: \text{yield } \sigma(t_1, \ldots, t_k)\n\end{array}
$$

 $L ::= sort(L)$ $L[N..N]$ | $L + L$ \sim \sim $\lceil N \rceil$ \mathbf{X} $N ::= find(L, N)$ 0 $[1,4,8,6] \rightarrow [1,4]$

inefficient, better index bank by non-terminal!

Bottom-up: algorithm (take 2)

nonterminals rules (productions) alphabet
bottom-up $(\langle \Sigma, N, R, S \rangle, [i \rightarrow o]):$ bank := $\{\}$ for d in $[0..]$: forall $(A \rightarrow rhs)$ in R: forall t in new-terms($A\rightarrow$ rhs, d, bank): if $(A = S \wedge t([i]) = [o]):$ return t bank $+=$ t;

 $new-terms(A \rightarrow \sigma(A_1 \dots A_k), d, bank):$

if $(d = 0 \land k = 0)$ yield σ

 $\boldsymbol{\mathsf{else}}$ forall $\mathbf{<} \mathsf{t}_1 \ldots \mathsf{t}_k$ $>$ in $\boldsymbol{\mathsf{bank}}[\mathsf{A}_1] \times \ldots \boldsymbol{\mathsf{bank}}[\mathsf{A}_k]$]: **yield** σ(t 1,…,t k)

L ::= $sort(L)$ |

L[N..N] |

L + L | $\lceil N \rceil$ X N ::= find(L,N) | 0 $[1,4,0,6] \rightarrow [1,4]$

inefficient, generating same terms again and again! better index bank by depth

Bottom-up: algorithm (take 3)

nonterminals rules (productions) alphabet
bottom-up $(\langle \Sigma, N, R, S \rangle, [i \rightarrow o]):$ $L ::= sort(L)$ $L[N..N]$ | bank := $\{\}$ $L + L$ \sim 1 for d in $[0..]$: $\lceil N \rceil$ forall $(A \rightarrow rhs)$ in R: X forall t in new-terms($A\rightarrow$ rhs, d, bank): $N ::= find(L, N)$ **if** $(A = S \wedge t([i]) = [o])$: 0 return t bank $+=$ t; $[1,4,0,6] \rightarrow [1,4]$

new-terms(A \rightarrow $\sigma(A_1...A_k)$, d, bank): if $(d = 0 \wedge k = 0)$ yield σ else forall $\langle d_1,...,d_k\rangle$ in $[0..d-1]^k$ s. forall $\langle t_1,...,t_k\rangle$ in bank[A₁,d₁] yield $\sigma(t_1,...,t_k)$

$$
\text{...} \quad \text{max}(d_1, \text{...}, d_k) = d - 1: \\ | \times \text{...} \times \text{bank}[A_k, d_k]:
$$

Bottom-up: example

Program bank

 $d = 2:$

- $d = 0$: $\boldsymbol{\Theta}$ **x** sort (x) x + x $x[0..0]$ $d = 1$: $find(x, \theta)$
	- $sort(sort(x))$ sort $(x[0..$ sort([0]) $x + (x + x) x +$ $x[0..0] + x(x + x) + x$ $x + sort(x) x[0..find(x,$

Explicit search from grammars

- Limitations:
	- Only scales to very small programs
	- Unsuitable for programs with unknown constants
		- A single unknown 32-bit constant makes the problem intractable
	- Hard to deal with context dependent semantics
- Example system:
	- Recursive Program Synthesis [Albarghouthi et al., CAV 2013]

Enumerative search

Bottom-up vs top-down

Top-down

Smaller to larger depth

• Has to explore between $3*10⁹$ and $10²³$ programs to find

Candidates are whole but might not be complete

- Cannot always run on inputs
- Can always relate to outputs (?)

Bottom-up

```
sort(x[0..find(x, 0)]) + [0] (depth 6)
```
Candidates are complete but might not be whole

- Can always run on inputs
- Cannot always relate to outputs

How to make it scale

Prune Discard useless subprograms

Useless depends on the problem and the domain.

Prioritize

Explore more promising candidates first

$$
P = \left\{ \frac{\begin{bmatrix} 0 \\ \mathbf{x}[N..N] \end{bmatrix}}{x[N..N]}, \right\}
$$

$$
P = \left\{ \begin{bmatrix} 0 \\ \mathbf{x}[N..N] \end{bmatrix}, \right\}
$$

$$
P = \left\{ \begin{bmatrix} 0 \\ \mathbf{x}[N..N] \end{bmatrix}, \right\}
$$

Equivalent terms

Terms guaranteed not to lead to a solution

Now this: Optimizing the Search

When can we discard a program?

redundant

infeasible

Equivalent programs

$\overline{\mathsf{x}}$ θ

 $\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet$

 $sort(x)$ $x[0..0]$ $x + x$ $[0]$ $find(x,0)$

 $sort(sort(x))$ sort $(x + x)$ sort $(x[0..0])$ $sort([0]) x[0..find(x,0)] x[find(x,0)..0]$ $x[find(x,0)...find(x,0)] sort(x)[0..0]$ $x[0..0][0..0] (x + x)[0..0] [0][0..0]$ $x + (x + x) x + [0] sort(x) + x x[0..0] + x$ $(x + x) + x [0] + x x + x[0..0] x + sort(x)$

Equivalent programs

 $\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet$

Equivalent programs

 $\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet$

 $\boldsymbol{\Theta}$ $sort(x)$ $x[0..0]$ $x + x$ $[0]$ find(x,0) $sort(x + x)$ $x[0..find(x,0)]$ $x + (x + x) x + [0] sort(x) + x$

$$
\begin{array}{c}\n \begin{array}{cccc}\n \begin{array}{cccc}\n \end{array} & & \n \end{array} & & \mathbf{x} + \text{sort}(\mathbf{x})\n \end{array}
$$

Bottom-up + equivalence reduction

bottom-up $(Σ , N, R, S>$, $[i \rightarrow o]$): bank $[A,d] := \{\}$ forall A, d for d in $[0..]$: forall $(A \rightarrow rhs)$ in R: forall t in new-terms($A\rightarrow$ rhs, d, bank): if $(A = S \wedge t([i]) = [o]):$ <u>return t</u> if (forall t' in bank[A,.]: !equiv(t, $t')$): $bank[A,d] += t$

new-terms($A \rightarrow \sigma(A_1...A_k)$, d, bank): if $(d = 0 \wedge k = 0)$ yield σ else forall $\langle d_1,...,d_k\rangle$ in $[0..d-1]^k$ s.t. $max(d_1,...,d_k) = d-1$: **forall** $$ in bank $[A_1,d_1] \times ... \times$ bank $[A_k,d_k]$: yield $\sigma(t_1,...,t_k)$

Bottom-up + equivalence reduction

```
bottom-up (<math>\Sigma</math>, N, R, S>, [i \rightarrow o]):
  bank[A,d] := \{\} forall A, d
  for d in [0..]:
     forall (A \rightarrow rhs) in R:
        forall t in new-terms(A\rightarrowrhs, d, bank):
           if (A = S \wedge t([i]) = [o]):<u>return t</u>
           if (forall t' in bank[A,.]: lequiv(t, t')):
              bank[A,d] += tnew-terms(A \rightarrow \sigma(A_1...A_k), d, bank):
 if (d = 0 \wedge k = 0) yield \sigmaelse forall <d<sub>1</sub>,...,d<sub>1</sub>> in [0..d-1]<sup>k</sup> s.t. max(d<sub>1</sub>,..,d<sub>k</sub>) = d-1:
```
How do we implement equiv?

- In general undecidable
- For SyGuS problems: expensive
- Doing expensive checks on every candidate defeats the purpose of pruning the space!

bank $[A_k,d_k]$:

```
bottom-up (<math>\Sigma</math>, N, R, S>, [i \rightarrow o]):
\{ \ldots \}equiv(t, t') {
  return t([i]) = t'([i])}
```
In PBE, all we care about is equivalence on the given inputs!

- easy to check efficiently
- even more programs are equivalent

 $\lceil 0 \rceil \rightarrow \lceil 0 \rceil$

 $\boldsymbol{\Theta}$

 $\overline{\mathbf{x}}$

 $sort(x)$ $x[0..0]$ $x + x$ [0] $find(x,0)$

> $sort(x + x)$ $x[0..find(x,0)]$

 $x + (x + x) x + [0] sort(x) + x$ $x + sort(x)$ $[0] + x$

```
bottom-up (<math>\Sigma</math>, N, R, S>, [i \rightarrow o]):
\{ \ldots \}equiv(t, t') {
  return t([i]) = t'([i])\mathcal{F}
```



```
bottom-up (<math>\Sigma</math>, N, R, S>, [i \rightarrow o]):
\{ \ldots \}equiv(t, t') {
   return t([i]) = t'([i])\mathcal{F}_{\mathcal{A}}
```
how to implement the reduction efficiently?

 $[[0] \rightarrow [0]]$ 0 $\mathbf{\overline{X}}$ $x[0..0]$ $x + x$

 $x + (x + x)$

Proposed simultaneously in two papers:

- Udupa, Raghavan, Deshmukh, Mador-Haim, Martin, Alur: TRANSIT: specifying protocols with concolic snippets. PLDI'13
- Albarghouthi, Gulwani, Kincaid: Recursive Program Synthesis. CAV'13

Variations used in most bottom-up PBE tools:

- ESolver (baseline SyGuS enumerative solver)
- EUSolver [Alur et al. TACAS'17]
- Probe [Barke et al. OOPSLA'20]
- TFCoder [Shi et al. TOPLAS'22]

-
-

User-specified equations [Smith, Albarghouthi: VMCAI'19]

Equations

 $sort(sort(1)) = sort(1)$ $(11 + 12) + 13 = 11 + (12 + 13)$ $n = n + 0$ $n + m = m + n$

 $\overline{\mathbf{x}}$ $\boldsymbol{\Theta}$

 $sort(x)$ $x[0..0]$ $x + x$ $[0]$ $find(x,0)$ sort(sort(x)) rule 1 applies, not in normal form <u>and the second contract of the second</u>

Built-in equivalences

For a predefined set of operations, equivalence reduction can be hard-coded in the tool or built into the grammar

 $L :: = sort(L)$ $L[N..N]$ $L + L$ $\lceil N \rceil$ \mathbf{X} N ::= find(L, N) 0

```
L ::= L1 | L1 + LL1 ::= sort(L)L[N..N]\lceil N \rceilX
N ::= find(L,N) |
      0
```
Built-in equivalences

Used by:

- λ^2 [Feser et al.'15]
- Leon [Kneuss et al.'13]

Leon's implementation using *attribute grammars* described in: • Koukoutos, Kneuss, Kuncak: An Update on Deductive Synthesis and

Repair in the Leon tool [SYNT'16]

Equivalence reduction: comparison

Observational

- Very general, no user input required
- Finds more equivalences
- Can be costly (with many examples, large outputs)
- If new examples are added, has to restart the search

User-specified

- \bullet Fast
- Requires equations

Built-in

- Even faster
- Restricted to built-in operators
- Only certain symmetries can be eliminated by modifying the grammar

Q1: Can any of them apply to top-down? Q2: Can any of them apply beyond PBE?

Other Strategies: Synthesis Through Unification

- Idea: Solve many simpler problems, combine their solutions.
- Rajeev Alur, Pavol Černý, Arjun Radhakrishna, Synthesis Through Unification, 2015
- STUN provides a general framework for breaking down a global search into a series of local searches.

