
CS5733 Program Synthesis
#3.Optimizing the Enumerative Search

Ashish Mishra

Logistics

• Reviews:
• Due tomorrow

• Projects:
• Topics: due next Thursday

• Other questions?

Academic paper reading workshop… on steroids

• Abstract and Introduction. Sec. 0 and 1.
• Overview:

• Understand the Problem and the Solution. Sec. 2 and 3.

• Technical Discussions: Sec. 4 - ?X (Anything Before Evaluation)
• Dig deeper into the Solution
• and/or formally understand the problem.

• Proofs/Evaluation/Implementation: Sec. ?X
• Proofs for theorems — Typically in PL Papers —-
• Evaluations of the ideas explained in Sec 2&3 and Discussed in Sec 4-?X

• Comparison with an appropriate baseline.
• Sometimes other specific RQs

• Conclusion, Related work, Future works.

EUSolver as an Example

4

SyGuS Continue…

5

Enumerative Search

Idea: Enumerate programs from the
grammar one by one and test them on the
examples
Challenge: How do we systematically
enumerate all programs?

top-down vs bottom-up

 =
Explicit / Exhaustive Search

FP Trivia:

functions : map, reduce

𝗋𝖾𝖽𝗎𝖼𝖾 (𝗆𝖺𝗉 𝗂𝗇 λx . x + 5) 0 (λx . λy . (x + y))

Top-down enumeration: search space
Search space is a tree where

• nodes are whole incomplete programs

• edges are “derives in one step”

L

X L[N…N]

X[N..N] L[N..N][N..N]

X[0..N] X[find (L,N)..N] …

X[0..find (L,N)]X[0..0] …

X[0..find(x, N)] X[0..find (L[N..N],N)]
…

…

Top-down enumeration = traversing the tree

• Search tree can be traversed:
• depth-first (for fixed max depth)

• breadth-first

• later in class: best-first

• General algorithm:
• Maintain a worklist of incomplete programs

• Initialize with the start non-terminal

• Expand left-most non-terminal using all productions

Top-down Algorithm

Top-down: example (depth-first)
Worklist w

Bottom-up enumeration

The dynamic programming approach:
• Maintain a bank of complete programs
• Combine programs in the bank into larger
programs using productions

Bottom-up: algorithm (take 1)

Bottom-up: algorithm (take 2)

new-terms(, d, bank):

if (d = 0 ∧ k = 0) yield

else forall in]:

yield σ(t 1,…,t k)

𝖠 → σ(𝖠1 . . . 𝖠k)
σ

< 𝗍1 . . . 𝗍k > 𝖻𝖺𝗇𝗄[𝖠1] × . . . 𝖻𝖺𝗇𝗄[𝖠k]

Bottom-up: algorithm (take 3)

Bottom-up: example
Program bank

Explicit search from grammars

• Limitations:
• Only scales to very small programs
• Unsuitable for programs with unknown constants

• A single unknown 32-bit constant makes the problem intractable
• Hard to deal with context dependent semantics

• Example system:
• Recursive Program Synthesis [Albarghouthi et al., CAV 2013]

Enumerative search

Bottom-up vs top-down

How to make it scale

Useless depends on
the problem and the
domain.

Equivalent terms

Terms guaranteed not
to lead to a solution

Now this : Optimizing the Search

20

When can we discard a program?

Equivalent programs

Equivalent programs

Equivalent programs

Bottom-up + equivalence reduction

Bottom-up + equivalence reduction

Observational equivalence

Observational equivalence

Observational equivalence

Observational equivalence

User-specified equations
[Smith, Albarghouthi: VMCAI’19]

Built-in equivalences

Built-in equivalences

Equivalence reduction: comparison

Other Strategies: Synthesis Through Unification

• Idea: Solve many simpler problems, combine their solutions.
• Rajeev Alur, Pavol Černý, Arjun Radhakrishna, Synthesis Through Unification, 2015
• STUN provides a general framework for breaking down a global search into a series

of local searches.

