CS57335 Program Synthesis

#2. Syntax-Guided Synthesis

Ashish Mishra

Logistics

®* Google Classroom
® Has everyone joined the Classroom

®* Course webpage: Experimental, so please get the updates on the Classroom.

® Office Hours:
® Monday: 3:30 - 4:30 pm.
®* Project list up on the course page by this weekend

®* Other questions?

Demo: Synquid: synthesis goal and components

Step 1: define synthesis goal as a type

sorted list

—

intersect :: xs:List a -» ys:List a =~
List a T

the set of elements

Step 2: define a set of components

* Which primitive operations is our function likely to use?
 Here: {N11, Cons, <}

A demonstration of Synquid

® http://comcom.csail.mit.edu/demos/#intersection

Next two classes

Behavioral constraints/spec

examples

[0] — 1,
110,2,3] — 3

Structural constraints/spec
Search Strategy

Expression Grammar
Enumeration

Today

® Synthesis from examples

®* Syntax-guided synthesis
® expression grammars as structural constraints
® the SyGusS project

®* Enumerative search

® enumerating all programs generated by a grammar

® bottom-up vs top-down

Synthesis from Examples

Programming by Example /
Programming by Demonstration
Inductive Programming /
Inductive Learning /

Inductive Program Synthesis

Inductive learning: History

‘: A 7 . '
MIT/LCS/TR-76 Patrick
Winston
LEARNING STRUCTURAL DESCRIPTIONS FROM EXAMPLES Programming by Demonstration:

An Inductive Learning Formulation®

Tessa A. Lau and Daniel S. Weld
p A t r i ¢ k H 'd i ns t on Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350
October 7, 1998

{tlau, weld}@cs.washington.edu

September 1970

ABSTRACT e Applications that support macros allow users to
Although Programming by Demonstration (PBD) has record a fixed sequence of actions and later replay this
i1 -1 - VR - -1 . -1* i -r - 1. . U B P [.

®* Explored the question of generalizing from a set of observations.
®* Became the foundation of machine learning.

® Lau’s work aimed to develop general techniques that could be adapted to a variety of
PBE problems.

Key issues in inductive learning

Program you actually
want

) &

Models matching th
observations

Space of
models

1. How do you find a model that matches the observations?

2. How do you know it is the model you are looking for?
Inductive problems are

mostly underspecified.

Key issues in inductive learning
Traditional ML.:

* Fix the space so that (1) is

) &

Models matching th
observations

Program you actually easy
want

Space of - Pick extremely expressive

models programs (e.g. NN).

- Pick a space that is too restricted
N / (e.g. SVMs).
* (2) becomes the main

challenge.

1. How do you find a model that matches the observations?

2. How do you know it is the model you are looking for?

The Synthesis Approach

R Program you
actually want
Space of Program synthesis:
programs |
» Customize the space so that
Programs I
| athin the (2) becomes easier
) observations

* (1) is now the main challenge

1. How do you find a model that matches the observations?

2. How do you know it is the model you are looking for?

Key Idea

Behavioral constraints

Parametrize the search by structural
constraints, make the program space
domain-specific

/

Structural constraints
Search strategy

Syntax-Guided synthesis

Example

[1,4,7,2,0,6,9,2,5,0] > [1,2,4,7,0]

L ::= X | the input
single(N) | single(1) = [1]
sort(L) | sort([6,9,2,5]) = [2,5,6,9]
slice(L,N,N) | slice([6,9,2,51,0,2) = [6,9]
concat(L,L) concat([6,9],[2,5]) = [6,9,2,5]
N ::= find(L,N) | find([6,9],9) = 1
0 0

f(x) := concat(sort(slice(x,0,find(x,0))), single(09))

Regular Tree Grammars (RTGs)

starting
nonterminal

b s

|

single(N) | \

ranked alphabet Sor‘t(L) | \
|

(terminals) :
SllCE(L, NJN) roductions
nonterminals concat(L,L) —— "

find(L,N) |
0

J

\

=
|

Regular tree grammars (RTGs)

nonterminals

alphabet starting nonterminal
N /

Rules are of the form: A = a(44, ..., 4,,) L — concat(L, L)
Derives in one step: C[A] = C[t]if (A—>t) ER concat(L,L) -> concat(x,L)

A is the leftmost non-terminal in C[A]
Incomplete terms/programs: {t € Tsx(N)|A -* 7} find(concat(L,L),N)
Complete terms/programs: {t e Tx|A - t} fFind(concat(x,x),0)

= programs without holes
Whole programs: {t € Tx|S =" t} sort(concat(L,L))

= roughly, programs of the right type

R'T'Gs as structural constraints

Space of programs
= the language of an RTG L(G)
= all , whole programs

@22= X

|
single(N) |
sort(L) |
|
|
|

X sort(x) concat(x, x) slice(x,0,0)

slice(L,N,N) slice(x,0,find(x,0))
concat(L,L)
N ::= find(L,N)

0 concat(sort(slice(x,0,find(x,0))), single(9))

How big is the space?

F ::=x | f(E,E)

depth<=0 ® N(Q) = 1

depth <=1 N(1) = 2

(f) (£
depth <=2 (%) (5%0 (f) 0 & & 9 (f) N(2) = 5
0 0 G® XX X

N(d) = 1 + N(d - 1)?

How big is the space?
F ::=x | f(E,E)

N(d) = 1 + N(d - 1)2 N(d) ~ c2 (c > 1)

N(1) = 1

N(2) = 2

N(3) =5

N(4) = 26

N(5) = 677

N(6) = 458330

N(7) = 210066388901

N(8) = 44127887745906175987802

N(9) =1947270476915296449559703445493848930452791205
N(10) =3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026

How big is the space?

E ::= X | oo | x|
f1(E,E) | «.. | fu(E,E)

N(@) = k
N(d) = Kk +m * N(d - 1)2
N(l) -— 3 k =M = 3
N(2) = 30
N(3) = 2703
N(4) = 21918630
N(5) = 1441279023230703
N(6) = 6231855668414547953818685622630
N(7) = 116508075215851596766492219468227024724121520304443212304350703

Syntactic sugar

Instead of this: We will often write this:
L ::= X | | = X ‘
single(N) | [N] |
sort(L) | sort(L) |
slice(L,N,N) | L[N..N] |
concat(L,L) L + L
N ::= find(L,N) | N ::= gind(L,N) |
7,

- allow custom syntax for terminal symbols

- not an RTG strictly speaking

Syntactic sugar

@::= sort(L) l X sort(x) X + x x[0..0]
L[N..N] |
- l [0..Find(x, 0)]
X[0..find (X,
[N] |
X
N ::= find(L,N) | sort(x[0..find(x, 0)]) + [0]

0

The SyGuS Project [Alur et al. 2013]

https://sygus.org/

®* Goal: Unify different syntax-guided approaches

 Collection of synthesis benchmarks + yearly competition

* 6 competitions since 2013

 consider writing a SyGuS solver for your project!
 Common input format + supporting tools

 parser, baseline synthesizers

SyGusS Problems

SyGusS problem = < theory, spec, grammar >

N

® A Library of types and functions ® RTG with Terminals in theory and |

. iInput variables
E.g. Theory of LIA ®* Example: Conditional LIA

expressions w/o sums

| @ | ite C E E
<E| CAC| AC

True, False
0,1,2,... .= X
AN, V, =, +, <, 1ite C ::= E

Tl

SyGusS Problems

SyGusS problem = < theory, spec, grammar >

A first-order logic formula over the theory

f(o, 1) = 1
f(1, 0) = 1
f(1, 1) = 1
£(2, 0) = 2

> > >

SyGuS Demo

® https://cved.qgithub.io/app/#temp 17496bf7-0f49-4631-94a2-a521831246¢5

https://cvc5.github.io/app/#temp_17496bf7-0f49-4631-94a2-a521831246c5

SyGusS Problems

SyGusS problem = < theory, spec, grammar >

A first-order logic formula over the theory

E . / \
xamples:

Formula with free variables:

'F(O, 1)=1/\ X £ f(x, y) A

f(1,) =1 A y £ f(x, y) A

f(1, 1) = 1 A (F(x, ¥) = x V £(x, y) = y)
-F(ZJ 0) = 2 Can Inductive

Synthesis Handle

these?

Are syntax restrictions sufficient?

Space of Programs is still

R Program you
actually want humOHQOUS
Space of
programs
Programs Can we do better?
/ matching the
> observations

Idea: dynamically
Larn from Failures

28

Counter Example Guided
Inductive Synthesis (CEGIS)

Zendo (game)

Article Talk

From Wikipedia, the free encyclopedia

Zendo is a game of inductive logic designed by Kory Heath in which one player
(the "Master") creates a rule for structures ("koans") to follow, and the other
players (the "Students") try to discover it by building and studying various koans
which follow or break the rule. The first student to correctly state the rule wins.

Zendo can be compared to the card game Eleusis and the chess variant
Penultima in which players attempt to discover inductively a secret rule thought of
by one or more players (called "God" or "Nature" in Eleusis and "Spectators" in
Penultima) who declare plays legal or illegal on the basis of their rules. It can also
be compared to Petals Around the Rose, a similar inductive reasoning puzzle
where the "secret rule" is always the same.

The game can be played with any set of colorful playing pieces, and has been
sold with a set of 60 Icehouse pyramids in red, yellow, green, and blue, 60 glass
stones and a small deck of cards containing simple rules for beginners. The
Icehouse pieces were replaced in the second edition with blocks, single size
pyramids and wedges. Origami pyramids are a common choice of playing piece.

Teacher and Learner Model for Rule Discovery

Mp Add languages v

Read Edit View history Tools

Zendo

The Game of Inductive Logic

\\
b
/ S
S Ry
‘.V" { 3 ’
S - N
2 Y
e .
S ‘ \ :
S \ .
< %
2 >
b, i

The beginning of a game of Zendo. Acéording
to the marker stones, the koan on the left
follows the Master's rule, but the one on the
right does not.

Designers Kory Heath
Publishers Looney Labs

Publication December 31, 1999; 24 years ago

Teacher and Learner Model for Rule Discovery

The teacher makes up a secret rule
e e.g. all pieces must be grounded

initial koans
The teacher builds two koans (a l
.. . guess
positive and a negative) L o [
earner < —— eacner
A student can try to guess the rule eaming fal l'eam‘”g”cceeds

\ 4
* if they are right, they win

 otherwise, the teacher builds a koan on
which the two rules disagree

Counter-example guided inductive synthesis (CEGIS)

The Zendo of program synthesis

Initial
examples

program
Inductive Verification

Synthesizer Oracle

counter-
example

learning fails learning succeeds

The duality bw
Verification and

SYLUERIE

Spec for max function

Program Space

Example: CEGIS

max(Xx,y) =2 X A max(x,y) 2y A

(max(x, y) = x VvV max(x, y) =vV)

expr = expr + expr | expr-expr | x|y |
| 0 | 1| ITE (bexp, expr, expr)
bexp = expr relop expr

relop =
Expr Counter Example
X <x=0,y=1>
y <x=1,y=0>
1 <x=0,y=0>
X+y <xx=1vy=1>
ITE (x <=y, vy, X) _

The final dimension
Search Strategies

Revisiting the Problem

Behavioral constraints = examples
:11417)2)616)9)2)5] 9 [1,2,4,7,6]
0] 2> [@]

5,1] > [1,5,0]

Search strategy? .
Structural constraints = grammar

L ::= sort(L) | L[N..N]
| L+L | [N] [x
N ::= find(L,N) | ©

Enumerative Search

Explicit / Exhaustive Search

ldea: Enumerate programs from the
grammar one by one and test them on the
examples

Challenge: How do we systematically
enumerate all programs?

top-down vs bottom-up

reduce (mapinAx.x+5) 0Ax.Ay.x +y

reduce

Bottom Up map 0 Ax.

in Ax. Ay.

FP Trivia:
reduce (map in Ax.x+35) 0 (Ax.Ay.(x +y))

functions : map, reduce

Top Down

Top-down enumeration: search space

Search space is a tree where

L ::= L[N..N] |
. X
* nodes are whole incomplete programs N ::= find(L,N) |
(¢ n " 9 0
* edges are “derives in one step
[> [1,4]]

/\

L[N...N]

“

X[N..N] L[N..N]J[N..N]

[]‘/ \[fAcu)]\‘
X|0..N X|find (L,N)..N

X[0..0] X[O..find (L,N)]

“ / ~

X[O..find(x, N)] X[O..find (L[N..N],N)] \

Top-down enumeration = traversing the tree

® Search tree can be traversed: L ::= L[N..N] |
® depth-first (for fixed max depth) X
* breadth-first N = glnd(L:N) |

® |ater in class: best-first

® General algorithm: [[1,4 2> [1,4]]
® Maintain a worklist of incomplete programs
® Initialize with the start non-terminal

®* Expand left-most non-terminal using all productions

