
CS5733 Program Synthesis
#2. Syntax-Guided Synthesis

Ashish Mishra



Logistics

• Google Classroom 
• Has everyone joined the Classroom 

• Course webpage: Experimental, so please get the updates on the Classroom. 

• Office Hours: 
• Monday: 3:30 - 4:30 pm. 

• Project list up on the course page by this weekend 
• Other questions?



Demo: Synquid: synthesis goal and components



A demonstration of Synquid

• http://comcom.csail.mit.edu/demos/#intersection



Next two classes
Behavioral constraints/spec

Structural constraints/spec
Search Strategy

 
[0] → 1,

[10,2,3] → 3

examples

Enumeration
Expression Grammar



Today

• Synthesis from examples 
• Syntax-guided synthesis 

• expression grammars as structural constraints 

• the SyGuS project 

• Enumerative search 
• enumerating all programs generated by a grammar 

• bottom-up vs top-down



Synthesis from Examples

= 
Programming by Example /  

Programming by Demonstration 
= 

Inductive Programming / 
Inductive Learning / 

Inductive Program Synthesis



Inductive learning: History

• Explored the question of generalizing from a set of observations. 
• Became the foundation of machine learning. 
• Lau’s work aimed to develop general techniques that could be adapted to a variety of 

PBE problems.



Key issues in inductive learning

1. How do you find a model that matches the observations? 
2. How do you know it is the model you are looking for?

Inductive problems are 
mostly underspecified.



Key issues in inductive learning

1. How do you find a model that matches the observations? 
2. How do you know it is the model you are looking for?

Traditional ML: 
• Fix the space so that (1) is 

easy 

- Pick extremely expressive  

     programs (e.g. NN). 

    - Pick a space that is too restricted  

  (e.g. SVMs). 

• (2) becomes the main 

challenge.



The Synthesis Approach

1. How do you find a model that matches the observations? 
2. How do you know it is the model you are looking for?

Program synthesis: 

• Customize the space so that 
(2) becomes easier 
• (1) is now the main challenge



Key Idea



Syntax-Guided synthesis

13



Example



Regular Tree Grammars (RTGs)



Regular tree grammars (RTGs)



RTGs as structural constraints



How big is the space?



How big is the space?



How big is the space?



Syntactic sugar

- allow custom syntax for terminal symbols 
- not an RTG strictly speaking



Syntactic sugar



The SyGuS Project

https://sygus.org/

[Alur et al. 2013]

• Goal: Unify different syntax-guided approaches 
• Collection of synthesis benchmarks + yearly competition 

• 6 competitions since 2013 

• consider writing a SyGuS solver for your project! 

• Common input format + supporting tools 
• parser, baseline synthesizers



SyGuS Problems

SyGuS problem = < theory, spec, grammar >

• A Library of types and functions 
• E.g. Theory of LIA

• RTG with Terminals in theory and i 
   input variables 
• Example: Conditional LIA                 

expressions w/o sums



SyGuS Problems

SyGuS problem = < theory, spec, grammar >

A first-order logic formula over the theory



SyGuS Demo

• https://cvc5.github.io/app/#temp_17496bf7-0f49-4631-94a2-a521831246c5 
•

https://cvc5.github.io/app/#temp_17496bf7-0f49-4631-94a2-a521831246c5


SyGuS Problems

SyGuS problem = < theory, spec, grammar >

A first-order logic formula over the theory

Can Inductive 
Synthesis Handle 
these?



Are syntax restrictions sufficient?

28

Space of Programs is still  
humongous 

Can we do better?  

Idea: dynamically 
Learn from Failures



 Counter Example Guided 
Inductive Synthesis (CEGIS)

29



Teacher and Learner Model for Rule Discovery



Teacher and Learner Model for Rule Discovery



Counter-example guided inductive synthesis (CEGIS)
The Zendo of program synthesis

The duality bw 
Verification and 
Synthesis



Example: CEGIS
max(x,y) ≥ x ∧ max(x,y) ≥ y ∧  

(max(x, y) = x ∨ max(x, y) = y)
Spec for max function

Program Space 
expr = expr + expr | expr - expr | x | y  | 

  | 0  | 1 | ITE (bexp, expr, expr) 
bexp = expr relop expr 
relop = …..

Expr Counter Example
x <x = 0, y = 1>
y <x = 1, y = 0>
1 <x = 0, y =0>

x + y <x = 1, y = 1>
ITE (x <= y, y, x) _



The final dimension 
Search Strategies

34



Revisiting the Problem



Enumerative Search

Idea: Enumerate programs from the 
grammar one by one and test them on the 
examples 
Challenge: How do we systematically 
enumerate all programs? 

top-down vs bottom-up

 = 
Explicit / Exhaustive Search

FP Trivia: 
 

functions : map, reduce

𝗋𝖾𝖽𝗎𝖼𝖾 (𝗆𝖺𝗉 𝗂𝗇 λx . x + 5) 0 (λx . λy . (x + y))



Top-down enumeration: search space
Search space is a tree where 

• nodes are whole incomplete programs 

• edges are “derives in one step”

L

X L[N…N]

X[N..N] L[N..N][N..N]

X[0..N] X[find (L,N)..N] …

X[0..find (L,N)]X[0..0] …

X[0..find(x, N)] X[0..find (L[N..N],N)]
…

…



Top-down enumeration = traversing the tree

• Search tree can be traversed: 
• depth-first (for fixed max depth) 

• breadth-first 

• later in class: best-first 

• General algorithm: 
• Maintain a worklist of incomplete programs 

• Initialize with the start non-terminal 

• Expand left-most non-terminal using all productions


