CS5733 Program Synthesis

#22. Neural and NS Synthesis : LLMs + Synthesis

Ashish Mishra, November 22, 2024

With material from Nadia Polikarpova and Armando
-Solar

Final Class for the course

Plan for the class

® Tomorrow : LLM Era
® synthesis from natural language

®* how can we make LLMs generate better code?

L1.Ms 4 Code

"fetch—-h2'

on isPositive(text: string Promise<boolean>

await fetch(http://text-processing.com/api/sentiment/’
|

method OST! Esl‘uﬂulfs;

body

saders i
header CodeWhisperer

"Content-Type": "application/x-www-form-urlencoded"

...but they are not perfect

according to a survey of 410 developers [Liang et al, ICSE’24]:

* the most popular reason developers don’t use LLMs is that generated
code “doesn’t meet functional or non-functional (e.g., security,
performance) requirements that | need”

according to [Perry et al, CCS’23]:
e participants with an Al assistant wrote significantly less secure code
* and were more likely to believe that they wrote secure code!

Two challenges

Accuracy Validation
LLMs provide no guarantees that Spec is partly informal: NL, code
spec is satisfied context
How do we increase the How do we determine if a
probability that a generated program matches user intent?

program matches user intent?

Techniques

Accuracy Validation
Constrained Decoding Self-consistency
Fine Tuning User interaction

High-level DSL

Techniques

Accuracy Validation
Constrained Decoding Self-consistency
Fine Tuning User interaction

High-level DSL

Monitor-guided Decoding

[Agrawal et al: Monitor-quided decoding of code LMs

with static analysis of repository context. NeurlPS'23]

LLMSs struggle to produce correct X toxt-davinci-003 and SantaCoder

Code in the Context Of a repo private SerYen:‘Node parseServer(String url) { host(arr[0])
it start o urd indexor (RE/) + 2: -port(Integer.parseInt (arr(1]))
int end = url.lastIndexOf(str:"?") == -1 ? -build();
url.length() : url.lastIndexOf(str:"?");
String str = url.substring(start, end);
String [] arr = str.split(regex:":");

\/ SantaCoder with monitor guided decoding

Idea: use a language server to
mask LLM token predictions

return ServerNode.Builder

.newServerNode() withIp(arr[@])

) .withPort(Integer.parselnt(arr[1]))
} .build();

Problem

LMs suffer from limited awareness of repository-level
context (e.g., files and dependencies) - especially in
private settings and not seen during training

Method to be completed

Hence, LMs end up using types defined in other files

incorrectly, for example,|hallucinating undefined names

at dereference locations

private ServerNode parseServer(String url) {
Preconditions.checkNotNull(url);
int start = url.indexOf(str:"/") + 2;
int end = url.lastIndexOf(str:"?") == -1 ?
url.length() : url.lastIndexOf(str:"?");
String str = url.substring(start, end);
String [] arr = str.split(regex:":");

return ServerNode.Builder
.newServerNode ()

e

x text-davinci-003 and SantaCoder

\ 4

host(arr[0])
.port(Integer.parselnt(arr(1]))
.build();

Problem

LMs suffer from limited awareness of repository-level

private ServerNode parseServer(String url) {

context (e.g., files and dependencies) - especially in Preconditions. checkNotNull(url);
. . . . int start = url.indexOf(str:"/") + 2;
private settings and not seen during training int end = url.lastIndexOf(SERE"?") == -1 ?

url.length() : url.lastIndexOf(str:"?");
String str = url.substring(start, end);
String [] arr = str.split(regex:":");

Hence, LMs end up using types defined in other files return ServerNode.Builder

.newServerNode()

incorrectly, for example,|hallucinating undefined names
at dereference locations

x text-davinci-003 and SantaCoder

Recent techniques use retrieval-based prompting, which host(arr[0])
bloats up the context, and is limited by LM context B e parsetmt(arriily)
window size. If the prompts do not have all the relevant

information, the LMs still end up hallucinating.

v

Monitor Guided Decoding
A text-davinci-003 and SantaCoder

private ServerNode parseServer(String url) {

iy host(arr[0])
Preconditions.checkNotNull(url); AN
int start = url.indexOf (SERE"/") + 2; .port(Integer.parselnt(arr[1]))
int end = url.lastIndexOf(str:"?") == -1 ? -build();

url.length() : url.lastIndexOf(str:"?");
String str = url.substring(start, end);
String [] arr = str.split(regex:":");
\/ SantaCoder with monitor guided decoding

return ServerNode.Builder th
.newServerNode() withIp(arr[0])
J .withPort(Integer.parselnt(arr[1]))
} .build();

Intuition: IDEs assist human developers by providing global context information during code authoring.
We extend this IDE assistance to LMs.

A monitor runs concurrently to
Monitor guided decoding the decoder. It iteratively uses
(MGD) defines monitor as a results from continuous static

stateful interface between LMs analysis to mask tokens
and static analysis. inconsistent with the static
analysis.

analyses for monitoring

MGD is a generalizable technique
that works across programming

languages, coding scenarios and
can use many different static

Working of Monitor Guided Decoding

Language Model Modified Logits
. —p' .. .ServerNode.Builder.newServerNode(). ' ==
™~ Lo I~
Sample
il g
X1, X2, «.., X
1 2 n \ 4
Xpey = 'with' () | Xne2 = 'Ip’ | L) Xne3 = " (°
maskgen(s;,V) H H H N
update(sl, 'w’ith') update(sz, le|) Update(SB. (Y
So S3
..... @ withIp(String i Stri i i
D withIp(Str Q@ Ip(String if No Pending
@ withPort(Integer port P Tntaoar nAard) Suggestions
) newServerlode Q@ Port(Integer port) 99

c Binar
tosies | _flillh FuEEE
- !

Vector

So is the default state in which all vocabulary tokens are valid. All the other states represent constraints

S)S1 S)
el to be applied for the next token.

Working of Monitor Guided Decoding

X1,

X2y «on

‘ —p' .. .ServerNode.Builder.newServerNode(). ' == LB

Xn

Language Model Modified Logits

l

.H‘

|
atlllh, sanple
\ 4
Xn,l = "with' o000 | Xps2 = 'Ip'
maskgen(s1,V) H H H B
v ¥
update(s,, 'with') update(s,, "Ip')

$2

‘Y,' NithIp String iy
Q withPort(Integer port
0 newServerlode

@ Ip(String if
@ Port(Integer port)

Xne3 = " (°

update(ss,

S3

No Pending
Suggestions

Logits

i,

Binary EEEE

Vector

pre Precondition check — determines when to trigger the static analysis.

P

Working of Monitor Guided Decoding

Language Model Modified Logits
. —p' . . .ServerNode.Builder.newServerNode(). ' =
Lo & ‘ ’ h
sample
Al :
X1, X2, «.., X
1 2 n v
Xps = 'with’ eeo e | Xne2 = 'Ip' I oo e Xne3 = ('
maskgen(s1,V) H H H N
v * . '
update(s,, 'with') update(s,, "Ip") update(ss, '(')
$2 S3
.......... € ithl tring ig)) .
f e @ Ip(String ig No Pending
P withPort(Integer port . - i Suqgestions
© newServerNode @ Port(Integer port a9

Vector

e Binar
Logits 1“ |I ‘'EEEN
' 11

Partial static analysis that derives constraints on the subsequent code at trigger location, such that the
¥ monitored property continues to be satisfied, for example, type-consistent identifier names

Working of Monitor Guided

Language Model Modified Logits

li

‘ —p' .. .ServerNode.Builder.newServerNode(). ' —=p

af

Sample

X1y X2y ..y Xp

Xney = "wWith'

maskgen(s;,V) H H | |

Tl

v
FLP \pdate(sl. 'with'")

Decoding

() | Xne2 = 'Ip’

v

update(s,, "Ip')

$1

@ withIp(String ip
© withPort(Integer port
Qf newServerNode

S2

@ Ip(String ip
@ Port(Integer port)

Xne3 = (7

update(ss,

S3

No Pending
Suggestions

Vector

- Binar
osies | il fummm
- L

1(') \

Working of Monitor Guided Decoding

Language Model Modified Logits

li

. —p' . .ServerNode.Builder.newServerNode(). ' == Le ‘
=1

i
Sample
lllh, g
X1, X2, ...y Xp J \ 4
E Xns1 = "with’ () | Xne2 = 'Ip’ | see Xne3 = (!
A ;
maskgen(s;,V) E H H N
A
v \ o
update(s,, 'with') update(s,, 'Ip') update(ss, '(')
Sy S3
Joomoe False = = = = = . ©@ withIp(String ij Q@ Ip(String ij No Pendin
@ withPort(Integer port ;) L S esliongs
9 newServerNode QO Port(Integer port s

c Binary
i
voies | illllh, vecror RN M W

Identifies LM vocabulary tokens consistent with the current state of monitor. For example, selects tokens
maskgen that are either prefix of any string in the current state, or of the form «-£-2*, where w is a member of

current state, E is a special set of non-identifier characters.

Working of Monitor Guided Decoding

Language Model Modified Logits

I

. —p' . . .ServerNode.Builder.newServerNode(). ' =—=p

ﬁII’

Sample

X1y X2y seep Xp

Xpey = 'with'

'YK) | Xpe2 = 'Ip’ | eeo e

- Binary
ostes | il vector NN W N

Xn’3 - I(l
maskgen(s;,V) HH H N
¥ A ¥ v R
] (@) update(s,, 'with') update(s,, "Ip") update(ss, '(')
pre Sq S5 S3
JTme
1
Joocooo3 ™ ocooo-H @ withIp(String ip T .
@ withPort(Integer port) @ Ip(String 1p No Pen(?lng
@ newServerNode @ Port(Integer port) Suggestions

Working of Monitor Guided Decoding

Xne3 = ('

update(ss,

Language Model Modified Logits
‘ —p' . . .ServerNode.Builder.newServerNode(). ' ==
=i
. Sample
il P
X1y, X2, co.y X
1 2 n v
Xpsy = ‘with’ () | Xpe2 = 'Ip’ | eeoo
\ N\ ¥
update(s;, 'with') update(s,, "Ip')
(=) .
lecoce- False = = = = = @ withIp(String ij © Ip(String ir No Pending
0 kthPort (ateger port Q Integer port Suggestions
1 newServerlode k Q Port(Integer por ‘J

Logits

A,

update

Binary EEEE

Vector

Takes the current state, and decoded token as input, producing the next state consisting of updated
constraints in light of the new token, or transitions back to the initial state, So

e

Formalizing Monitor Guided Decoding

A Monitor M, is a 6-tuple (A, so, S, pre, update, maskgen)

, ” o~ .\ _ |softmax(€)[X,41] if s = sg is the wait state
(Lol|Myp)(zni1|21; ..., 2n; C,p, 8) = {softmax((@ m)[X,+1] otherwise (1)
=Tl |®vies siBaal) (2)
m = maskgen(s, V') (3)

” {Ayﬂ(.z'l. i) Ls=gp Apre(s; T, %) (4)

S = .
update(s,z, ;) otherwise

pre Precondition check — determines when to trigger the static analysis.

A Partial static analysis that derives constraints on the subsequent code at trigger location, such that the

¥ monitored property continues to be satisfied, for example, type-consistent identifier names

Sp Sq S -
0°1°2 .- {5 be applied for the next token.

So is the default state in which all vocabulary tokens are valid. All the other states represent constraints

|dentifies LM vocabulary tokens consistent with the current state of monitor. For example, selects tokens
maskgen that are either prefix of any string in the current state, or of the form « - £-3*, where w is a member of

current state, E is a special set of non-identifier characters.

update constraints in light of the new token, or transitions back to the initial state, So

Takes the current state, and decoded token as input, producing the next state consisting of updated

Monitor-guided Decoding

[Agrawal et al: Monitor-quided decoding of code LMs

75

70

\ with static analysis of repository context. Neur|PS’ 23]
\ text-davinci-003
code-gen 350M
Thanks to monitor guidance,

o a model with 1000x fewer parameters
s can generate better code than GPT3!

scor'e@l scoré@Z scoré@3 score@4 scor'e@S score@6

65

60

55

50

45

compilation rate

Techniques

Accuracy Validation
Constrained Decoding Self-consistency
Fine Tuning User interaction

High-level DSL

Self-Play

AlphaZero got better at Go
through self-play;
can we do this for code?

Idea: use LLM to generate
programming puzzles and
solutions to those puzzles

[Haluptzok et al: Language models can teach

themselves to program better. ICLR’23]

def f(c: int):
return ¢ + 50000 == 174653

def gO:
return 174653 - 50000

assert f(g())

def f(x: str, chars=['Hello', 'there', 'you!'l, n=4600):
return x == x[::-1] and all([x.count(c) == n for c in chars])

def g(chars=['Hello', 'there', 'you!'l, n=4600):
s = "".join([c*n for c¢ in chars])
return s + s[::-1]

assert £(g())

Self-Play

[Haluptzok et al: Language models can teach

themselves to program better. ICLR’23]

Training Data Iif oLpMo ses Synthetic Puzzles & 3. Verify Verified Synthetic
(155 puzzles) solutions Proposed Solutions solutions Data
A

5. Repeat 4. Fine-tune

Language Model
(LM)

(7

Techniques

Accuracy Validation
Constrained Decoding Self-consistency
Fine Tuning User interaction

High-level DSL

Speculyzer

[Li, Key, Ellis: Towards trustworthy

neural program synthesis. 2023]

Goal: Increase NATURAL LANGUAGE Ganwesovethis oy ipraTion
. PROMPT
trustwort h INESS Of N L' >CO d e SPE C:’::Z:TI ON svlrlTl;: o Which specificationismost gxpLANATION
PROMPT “Write a python PROMPT

function F that removes all the

[odd numbers from a list.”] Which program is the best? ACCURACY

Idea: generate tests SPECIFICATIONS (TESTS) PROGRAMS e
alongside programs

def F(lst):

assert f([]) ==] INPUT return [x For x in Ist if x%2 == 1] PROGRAMS
- OUPUT 2
assert F([1,2,3]) == [2] ©) X|v|vIX
5 Vv X XV
der;:ecéﬁsts % VARV 4D 4EV4
out= LOGICAL
assert len(out) <=len(lst) RELATIONS defF F(lst): lé,J v X[v[X

return Ist[1:] + [[5:]

>

N\ J

Speculyzer

"Write a python
function f that removes all the
odd numbers from a list.”

Speculyzer

“Write a python
function f that removes all the
odd numbers from a list.”

Gef F(lst):)

return [x for x in Ist if x%2 == 1]

def f(lst):
return Ist[1:] + ([5:]

Speculyzer

“Write a python
function f that removes all the
odd numbers from a list.”

(def F(lst):)
return [x for x in Ist if x%2 == 1]

assert f([]) ==[]

assert f([1,2,3]) == [2]

def spec(lst):
out = f(lst)
assert len(out) <= len(lst) def F(lst):
return Ist[1:] + |[5:]

-

Speculyzer

(i e

“Write a python
function f that removes all the

odd numbers from a list.”
. :
) a B

-
0 [defFusty:

f
assert f([]) ==. (return [x for x in Ist if x%2 == 1] PROGRAMS
: 7))
assert f([1,2,3]) == [2] % x viv x
2 (v[X|X|v
def spec(lst): t{ vV XV
out = F(lst) O
assert len(out) <= len(lst) def F(lst): a |V | |v| X
return Ist[1:] + ([5:] M
. y & >/ & >

_ _J
ha

Speculyzer

[Li, Key, Ellis: Towards trustworthy

neural program synthesis. 202 3]

What Can We do With the teStS? NATURAL LANGUAGE Can;\:‘ggf;l;‘e?this CALIBRATION
PROMPT
* rank programs based how many ST o SYNTHESIS | nformativer o EXPLANATION
PROMPT _ “Write a python PROMPT
tests they pass wisprogemieves: | (G
* cluster programs based on their ‘ | 2
behavior on test inputs SPECIFICATIONS (TESTS) PROGRAMS PROBABILITY ESTIMATION
* train a classifier to predict if st f = by
. . INPUT return [x For xin Ist if x%2 == 1] PROGRAMS
the model knows the solution - oupuT A IE
assert f([1,2,3]) == [2] 8 XX
e pick the most selective tests st spectty S il
out = f(lst) LOGICAL 9
a V| X|V|X

t O S h OW to t h e u S e r issert len(out) <= len(lst) ~ RELATIONS def Félst):l {19+ 1[5
L Vi

)

Speculyzer

~ PROGRAM [Li, Key, Ellis: Towards trustworthy

def derivative(xs: list):

""" xs represent coefficients of a polynomial. neural program Syn th 65/5. 2023]
xs[0] + xs[1] * x + xs[2] * x*2 +

Return derivative of this polynomial in the same form.

>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])

[2, 6]

return [x * 1 for 1, x in enumerate(xs) if i != 0]

N J
TOP LOGICAL RELATION

def test_derivative(xs: list):

""" Given an input “xs', test whether the function ‘derivative’
is implemented correctly.

Picking the most selective test to show

ys = derivative(xs)
assert len(ys) == len(xs) - 1

for 1 in range(len(ys)): to the user

assert ys[i] == xs[i+1] * (1 + 1)

run ‘test_derivative' on a new testcase
test_derivative([3, 1, 2, 4, 5])

def test_derivative(xs):
""" Test function derivative().

TODO
pass

run ‘test_derivative' on a new testcase
test_derivative([2, 3, 4, 10, -12])

Speculyzer: results

[Li, Key, Ellis: Towards trustworthy
neural program synthesis. 2023]

HumanEval with Davinci Model

1.0
Can achieve zero error rate on human eval in

exchange for dropping recall from 93% to 44%!

0.4 0.6

0.8
Precision

1.0
= 0urs

= ours, |0 only
= Ours, rels only == random

Techniques

Accuracy Validation
Constrained Decoding Self-consistency
Fine Tuning User interaction

High-level DSL

The validation challenge

“In the context of Copilot, there is a shift from writing code to understanding code”
Taking Flight with Copilot, ACM Queue, Dec 22

validation is hard
* [Vaithilingam et al] observed 8 cases of over-reliance: bugs due to skipped validation

validation is a bottleneck
* single most prevalent activity according to [Mozannar et al]

prevalence of a validation strategy depends on its cost [Liang et al]

to help with validation, we need to lower its cost

LEAP

[Ferdowsi et al: Validating Al-Generated Code
with Live Programming. CHI’24]

lowers the cost of validation by execution
using live programming

Research questions

how does live programming affect...

over- / under-reliance on Al
validation strategies
cognitive load

APl-heavy

clean dataframe and compute stats find most frequent bigram in a string
using pandas

fixed prompt

Participants

oo occupation:

m 15 academia / 2 industry

Python usage:
99999 2 occasionally /

8 regularly /

/ almost every day

n=1/

RO1: over-/under-reliance

Bigram Pandas

B Completed, Accurate [l Completed, Inaccurate (Over-reliance)
[] Timeout after Validation] Timeout during Validation (Under-reliance)

6 no-PB vs O PB participants mid-judged correctness of their solution

by lowering the cost of validation,
leap reduces over-/under-reliance on Al

RO1: over-/under-reliance

“it was easy to understand the behavior of a code suggestion because the little
boxes on the side allowed for you to preview the results.” (P3)

“it saved me the effort of writing multiple print statements.” (P1)

6 no-PB vs 0 PB participants mid-judged correctness of their solution

by lowering the cost of validation,
leap reduces over-/under-reliance on Al

RO2: validation strategies

percentage of time spent in Suggestion

Panel

__I]_

Pandas

0% 25% 50%

e {I} No-LP

“I didn’t look too closely in the actual code,
| was just looking at the runtime values on the side.” (P1)

leap participants spent less time reading code

75%

Techniques

Accuracy Validation
Constrained Decoding Self-consistency
Fine Tuning User interaction

High-level DSL

Xi Ye, Qiaochu Chen, Isil Dillig, Greg Durrett: SatL.LM: Satisfiability-Aided Language Models Using Declarative Promptin
NeurIPS'23

atLM

Input

Each of five students— Hubert, Lori, Paul, Regina, and Sharon—will visit exactly one of three cities—Montreal, Toronto, or Vancouver, according to the
following conditions: Sharon visits a different city than Paul. Hubert visits the same city as Regina. Lori visits Montreal or else Toronto. If Paul visits
Vancouver, Hubert visits Vancouver with him. Each student visits one of the cities with at least one of the other four students.
Question: Which one of the following must be true?

(A) If any of the students visits Montreal, Lori visits Montreal. (B)[...]

Chain-of-Thought Prompting (imperative specification) Satisfiability-Aided LM (ours; declarative specification)
Specification Specification
We know each student visits one of the cities with at students = [Hubert, Lori, Paul, Regina, Sharon]
~ least one of the other four students. We know there are cities = [Montreal, Toronto, Vancouver]
{ ~five students and three cities. So there must be three visits = Function(students, cities)
“j students visiting the one city and two other students # Sharon visits a different city than Paul
.visiting another city. € visits(Sharon) != visits(Paul)
Lori visits Montreal or else Toronto
Let's consider option (A). @or(visits(Lori) == Montreal, visits(Lori) == Toronto)
Assume someone visits Montreal, but Lori does not visit # Each student visits one of the cities with at least one other student
Montreal. QForAll([sl], Exists([s2], And(s2 != s1, visits(sl) == visits(s2))))
17 We know Lori visits Montreal or else Toronto. So Lori
% visits Toronto. # (A)
/ Assume Sharon visits Toronto with Lori. Osolve(Implies(Exists([s], visits(s) == Montreal), visits(L) == Montreal
:"; We know Sharon visits a different city than Paul. So
: “aPaul has to visit Montreal. A *
i Hubert and Regina can visit Montreal with Paul with no The LLM only parses
Wconflicts. So Lori does not necessarily visit Montreal. the question to a 0.
This statement is False. problem specification Zé o.....: b s .Q —p False
A in this step SAT Solver € - -
The LLM parses the question, plans the reasoning, and A\ .
executes it all in the CoT (shown by dashed arrows) (A SAT solver generates and executes a proof plan using automated theorem proving

-

https://arxiv.org/abs/2305.09656

SatLM: Potential Improvements

Run multiple times and

* ignore attempts that don’t parse or produce AMBIG/UNSAT
e even better: check answers for consistency

Run in a loop, providing feedback to the LLM
e if AMBIG, tell the LLM to strengthen the constraints
 if UNSAT, get UNSAT core and tell the LLM to weaken one of those

Combine individual constraints from different solutions
* maybe perform lattice search until we get a SAT, unambiguous set

Logistics

®* Final Exam : November 27 , Timings?
®* Project Presentations November 29th (4:30 - 6 pm)
* Project Report Submission Dec: 2nd
Exam marks : Tuesday
Please see your ERP for the marks for the paper reading.
® Syllabus:
® Starting Sketch and CS

® Minus Hoare Logic

