CS5733 Program Synthesis

#22. Neural and NS Synthesis : Take 2

Ashish Mishra, November 4, 2024

With material from Nadia Polikarpova and Armando -Solar

DreamCoder.

Plan for the week

- Today : Pre-LLM Era
 - statistical language models for code
 - neural architectures
 - better search with neural guidance
- Tomorrow : LLM Era
 - synthesis from natural language
 - how can we make LLMs generate better code?

Lessons from NLP

- Learning Complex distributions
- Many techniques from NLP can be brought into to learn Distributions over programs.
 - N-gram Models
 - Recurrent Models
- Sequence of tokens vs. Program Structures
- Searching with a learned distribution.

Statistical Language Models

Originated in Natural Language Processing

In general: a probability distribution over sentences in a language

- P(s) for $s \in L$
- In practice:
 - must be in a form that can be used to guide generation / search
 - and also that can be learned from the data we have

The big brown bear scares the children with its roar $P(scares \mid bear, brown)$

Probability of a word depends on the previous n words

Represented with a table: $P(w_i \mid w_{i-1}, w_{i-2}, ..., w_{i-n})$

Bigger n makes more accurate, but also more difficult to learn, requires much bigger table

Downsides

- some words require more context than others
- some words carry very little information . E.g roar vs. bear

Other Recurrent Models

Statistical Models in Synthesis : Multiple axes

What are we modeling (conditioning)?

- A corpus of programs: what are likely programs in this language / DSL / for this specific task?
- Spec-program pairs: what are likely programs for this spec?

Kinds of guidance:

- Likely components (unigrams)
- Sequence-based: probability of next token (given previous tokens)
- Grammar-based: probability of grammar rule

Model architecture:

• n-grams, PHOG, neural, ...

Statistical Models in Synthesis

SLANG

Input: code snippet with holes

```
SmsManager smsMgr = SmsManager.getDefault();
    int length = message.length();
    if (length > MAX_SMS_MESSAGE_LENGTH) {
      ArrayList<String> msgList =
          smsMgr.divideMsg(message);
      ? {smsMgr, msgList} // (H1)
    } else {
      ? {smsMgr, message} // (H2)
                          SLANG
SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) {
  ArrayList<String> msgList =
      smsMgr.divideMsg(message);
  smsMgr.sendMultipartTextMessage(...msgList...);
```

Output: holes completed with (sequences) of method calls

```
smsMgr.sendTextMessage(...message...);
```

} else {

SLANG

Main Idea:

- Reduce the problem of code completion to a natural-language processing problem of predicting probabilities of sentences.
- A scalable static analysis that extracts sequences of method calls from large codebases, and indexes them into statistical language models such as N-gram and Recurrent Neural Networks.
- A synthesis procedure that takes as input a partial program with holes and leverages probabilities learned in the language model to discover code completions for the holes. Our

SLANG: inference phase

code snippet with holes

- bigrams suggest candidates
- n-grams / RNNs rank them

Partial History	Id	Candidate Completions	
$\langle \texttt{getDefault, ret} \rangle \cdot \langle \texttt{H2}, \texttt{smsMgr} \rangle$	11	$\langle ext{getDefault,ret} angle \cdot \langle ext{sendTextMessage}, 0 angle$	0.0073
	12	<pre>(getDefault.ret) · (sendMultipartTextMessage, 0)</pre>	0.0010
$\langle \texttt{getDefault, ret} angle \cdot \langle \texttt{divideMsg}, 0 angle \cdot \langle \texttt{H1}, \texttt{smsMgr} angle$	21	$\langle ext{getDefault,ret} angle \cdot \langle ext{divideMsg}, 0 angle \cdot \langle ext{sendMultipartTextMessage}, 0 angle$	0.0033
	22	$\langle ext{getDefault,ret} angle \cdot \langle ext{divideMsg}, 0 angle \cdot \langle ext{sendTextMessage}, 0 angle$	0.0016
$\langle \texttt{length}, 0 \rangle \cdot \langle \texttt{H2}, \texttt{message} \rangle$	31	$\langle \text{length}, 0 \rangle \cdot \langle \text{length}, 0 \rangle$	0.0132
	32	$\langle \text{length}, 0 \rangle \cdot \langle \text{split}, 0 \rangle$	0.0080
	33	$\langle \texttt{length}, 0 angle \cdot \langle \texttt{sendTextMessage}, 3 angle$	0.0017
	34	$(\texttt{length}, 0) \cdot (\texttt{sendMultipartTextMessage}, 1)$	0.0001
$\langle \texttt{divideMsg, ret} angle \cdot \langle \texttt{H1}, \texttt{msgList} angle$	41	$\langle \texttt{divideMsg, ret} \rangle \cdot \langle \texttt{sendMultipartTextMessage}, 3 \rangle$	

Sequence of events, generated
by tracking for each object o
Generate Abstract Histories

abstract histories of objects

SLANG

Predicts completions for sequences of API calls

- Treats programs as (sets of) abstract histories
 - Performs static analysis to abstract programs into finite histories
- Training: learns bigrams, n-grams, RNNs on histories
- Inference: given a history with holes
 - Uses bigrams to get possible completions
 - Uses n-grams / RNN to rank them
 - Combines history completions into a coherent program

Features: fast (very little search)

Limitations: all invocation pairs must appear in training set

Statistical Models in Synthesis

sk_p A Data-driven Synthesis approach

$$\begin{array}{l} \text{def evaluatePoly(poly, x):} \\ a = 0 \\ f = 0.0 \\ \text{for a in range(0, len(poly) - 1):} \\ f = poly[a]*x**a+f \\ a += 1 \\ \text{return f} \end{array}$$

def evaluatePoly(poly, x): $\mathbf{a} = \mathbf{0}$ f = 0.0

Output: corrected program

while a < len(poly): f = poly[a]*x**a+f a += 1return f

sk_p: A Data-driven Synthesis approach for MOOC

Main Idea:

- A learning algorithm is used during training time to produce a model of the problem at hand.
- Given an incomplete or erroneous program (the seed program), this model can produce a distribution of candidate completions or corrections.
- This distribution is used by a synthesis algorithm to find candidate solutions that have high probability according to the model and also are correct according to a potentially incomplete specification.

sk_p

Trained on a corpus of correct program fragments

Training

- Each correct fragment is converted to an input-output training pair:
 - The partial fragment (with a hole) is the input, and the missing statement is the output.

Example Training Input:

else:

x2 += x0[x3] * (x1 ** x3)

Example Training Output:

while x3 < len (x0) :

sk_p

Trained on a corpus of correct program fragments

Program corrections for MOOCs

Treats programs as a sequence of tokens

• Abstracts away variables names

Uses the skipgram model to predict which statement is most likely to occur between the two

Features

• Can repair syntax errors

Limitations

• Needs all algorithmically distinct solutions to appear in the training set

Statistical Models in Synthesis

Euphony

Trains a PHOG on a corpus of solutions to simple problems Uses it to guide top-down search with A* Normalizes constants (transfer learning)

Statistical Models in Synthesis

Learning Inductive Program Synthesis (LIPS)

- DSL and Attributes
 - An attribute function A: Program P in DSL -> Finite Attribute Vectors A (P).
 - E.g. Presence or absence of HOFs, like does the program contain sort
 - Attributes are a link between ML and Search.
 - ML predicts q (A(P) | Observations)
- Data Generation: Synthetic data generation in DSL
- ML Model
- Search

- An Instance of LIPS
- DSL and Attributes:
 - Attributes: binary attributes indicating the presence or absence of high-level functions in the target program. To

DSL : A query language like SQL or LINQ using High-level functions over lists.

$a \leftarrow [int]$	An input-output example:				
$b \leftarrow Filter$ (<0) a	Input:				
c \leftarrow M AP (*4) b	[-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]				
$d \leftarrow SORT \ c$	Output:				
$e \gets REVERSE \; d$	[-12, -20, -32, -36, -68]				

- Data Generation
 - Enumerate Programs in DSL and Pruning.
 - To generate valid inputs for a program, they enforce a constraint on the output value bounding integers to some predetermined range.
- ML Model
 - Employs Encoder-Decoder NNs to model and learn the mapping from input-output examples to attributes.
 - learns to predict presence or absence of individual functions of the DSL.
- Search
 - DFS, Sketch and λ^2

Predicts likely components from IO examples

Features

- Trained on synthetic data
- Can be easily combined with any enumerative search
- Significant speedups for a small list DSL

Limitations

- Unclear whether it scales to larger DSLs or more complex data structures
- e.g. uses a simple feed-forward neural net, cannot encode arbitrarylength examples

Statistical Models in Synthesis

RobustFill, aka neural FlashFill

Input String	Output String
jacob daniel devlin	Devlin, J.
jonathan uesato	Useato, J
Surya Bhupatiraju	Bhupatiraju S.
Rishabh q. singh	Singh, R.
abdelrahman mohamed	Mohamed, A.
pushmeet kohli	Kohli, P.

RobustFill: PBE as Seq2Seq with Attention

Next program token

Each sequence is encoded with a non-attentional LSTM

- final hidden state is used as the initial hidden state of the next LSTM.

Attention

Key idea: Summarizing into a single vector is a big bottleneck. Every output should have direct access to the whole input

Exploit some degree of locality:

- different tokens of the output depend primarily on small subsets of tokens from the input.
- attention mechanism allows each output token to pay attention to a different subset of input tokens.

Key Idea: use attention within an individual input/output pair, but then aggregate over the distributions proposed from each of the examples.

```
in: "Armando Solar-Lezama"
out: "A. Solar-Lezama"
Program: Concat(SubString(in, Pos("", Word), Pos(Char,"")),
". " SubString(in, Pos(" ",Word), Pos("", End));
```

Three Parts: an expression that extracts the first initial,

concatenated with a constant,

an expression that extracts everything after the first space

Key ideas:

Embed I/O examples with LSTM encoders

Emit program tokens with LSTM decoders

Train from large-scale random data

Key ideas:

Embed I/O examples with LSTM encoders Emit program tokens with LSTM decoders

Train from large-scale random data

Architecture:

- *Pooling* across examples at each step to predict one program token
- Attention to examples during program decoding

Beam search with execution constraints

 Execute decoded subexpressions; remove programs whose outputs are not prefixes of the target

IO examples to program translation as a Seq2Seq task Features

- Trained on synthetic data
- Unlike FlashFill, does not require inverse semantics

Limitations

- Does not guarantee consistency with IO examples
- Requires constraints/postprocessing to ensure grammar syntax
- Hard to design synthetic data generation realistically

Statistical Models in Synthesis

Deductive Search

Input	Output
alice liddell	To: al
bob o'reilly	To: bo

- 1. Select a hole.
- 2. Select an operator to expand.
- 3. Propagate the examples.
- ✓ Correct by construction
- $\checkmark\,$ Constraint propagation exists
 - for many operations & domains
- ✓ Easy to add a ranking function
- 🔀 Exponentially slow

Deductive Search

Why so slow? Explores the entire search space (unless deduction prunes some of it)

DeepCoder: Learning to Write Programs

Idea: Order the search space based on a priority list from DNN *before starting*

Neural-Guided Deductive Search

Idea: Order the search space based on a priority list from DNN *at each step*

Search branch prediction

Collect a complete dataset of intermediate search results:

at a search branch $N \coloneqq F_1(...) | F_2(...) | \cdots | F_k(...)$ given a spec $\varphi = \{x \rightsquigarrow y\}$ produced programs $P_1, ..., P_k$ with scores $h(P_1, \varphi), ..., h(P_k, \varphi)$

A ranking function **h**

Learn a predictive model f s.t. $f(F_j, \varphi) \approx h(P_j, \varphi)$

- φ is an input-output example spec: $\varphi = \{x \mapsto y\}$
- *f*: (enum production_id, string x, string y) -> float

Train using squared-error loss over program scores:

Objective:
$$\mathcal{L}(f; F_j, \varphi) = [f(F_j, \varphi) - h(P_j, \varphi)]^2$$

LSTM-based Model for predicting the score

Search

Picking just the topmost rule to expand may be incomplete

Threshold-based

- For a fixed threshold $\boldsymbol{\theta}$
- explore all branches within $\boldsymbol{\theta}$ from the best

Branch-and-bound

- Explore branches depth-first in the order of scores
- Discard unexplored branches if they are predicted to be worse that current optimum

Next Reading

• Kalyan et al: Neural-Guided Deductive Search ICLR'18

Statistical Models in Synthesis

Takeaways

Neural networks excel at noticing patterns in input data

• don't expect magic, task must be solvable by a human

Needs appropriate network architecture

• e.g. LSTM for sequential examples, CNN for grids, ...

Needs a search algorithm

• A*, branch-and-bound, beam, MCTS, sequential monte-carlo, ...

Takeaways (training)

To train a model, you need enough data + appropriate loss

• For NNs: 10-100K diverse data points for an "average" task

How to increase data efficiency?

- abstract the programs (Slang, Skip, Euphony)
- for spec->program can use synthetic data because we are learning semantics, not properties of the corpus (DeepCoder, Robustfill)
- the less context the guidance needs, the more data points we can extract from a given set of programs (NGDS)

Plan for the week

- Today : Pre-LLM Era
 - statistical language models for code
 - neural architectures
 - better search with neural guidance
- Next/Last Class of the session : LLM Era
 - synthesis from natural language
 - how can we make LLMs generate better code?