CS5733 Program Synthesis

#22. Neural and NS Synthesis : Take 2

Ashish Mishra, November 4, 2024

With material from Nadia Polikarpova and Armando
-Solar

DreamCoder.

WAKE

Library
fi(x) =(+ x 1)
fa(z) =(fold cons

(cons z nil))

Recognition

Neurally-Guided
Search

model

[7 2 3]—»[4 3 8] —b%%
[4 3 2]—»[3 4 5)

Programs for task:
(map fi (fold f2 nil x))

SLEEP: ABSTRACTION

progs. for task 1: progs. for task 2:
(+ (car z) 1) (cons (+ 1 1))

i 1 1 car z

Refactoring Algorithm:
version spaces

v

new Library w/ (+ x 1):

SLEEP: DREAMING

Fantasies Replays

Library progs. for task

9)dwes
9)dwes

program program

Train recognition model

run
program ——» task

Loss

o
£

Plan for the week

® Today : Pre-LLM Era
® statistical language models for code
® neural architectures
® better search with neural guidance
® Tomorrow : LLM Era
® synthesis from natural language

®* how can we make LLMs generate better code?

Lessons fromNLP

* Learning Complex distributions

« Many techniques from NLP can be brought into to learn Distributions over programs.
* N-gram Models
* Recurrent Models

« Sequence of tokens vs. Program Structures

« Searching with a learned distribution.

Statistical Language Models

Originated in Natural Language Processing

In general: a probability distribution over sentences in a language
* P(s)fors €L

In practice:
* must be in a form that can be used to guide generation / search
e and also that can be learned from the data we have

n-gram models

The big brown bear scares the children with its roar

\ P(scares |bear, brown)

Probability of a word depends on the previous n words

l—n

Represented with a table: P ‘wl 1 Wi_gy wuvy W

Bigger n makes more accurate, but also more difficult to learn, requires
much bigger table

Downsides
e some words require more context than others
e some words carry very little information . E.g roar vs. bear

Other Recurrent Models

Statistical Models in Synthesis :
Multiple axes

What are we modeling (conditioning)?

* A corpus of programs: what are likely programs in this language / DSL /
for this specific task?

* Spec-program pairs: what are likely programs for this spec?

Kinds of guidance:
* Likely components (unigrams)
* Sequence-based: probability of next token (given previous tokens)
 Grammar-based: probability of grammar rule

Model architecture:
* n-grams, PHOG, neural, ...

Statistical Models in Synthesis

Conditioning
[Raychev, Vechey, Yahav: Code Completion

with Statistical Language Models. PLDI’14]

spec -> program

DSL/task

Guidance

SLANG

Input: code snippet
with holes

Output: holes completed with
(sequences) of method calls

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) ({
ArrayList<String> msgList =
smsMgr.divideMsg (message) ;
? {smsMgr, msgList} // (H1)
} else {
? {smsMgr, message} // (H2)
}

SLANG

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length{();
if (length > MAX_SMS_MESSAGE_LENGTH) {
ArraylList<S5tring> msglList =
smsMgr.divideMsg(message) ;

smsMgr. sendMultipartTextMessage (.. .msglList. ..

} else {

smsMgr . sendTextMessage (. . .message. ..);
}

SLANG

Main ldea:

e Reduce the problem of code completion to a natural-language
processing problem of predicting probabilities of sentences.

e A scalable static analysis that extracts sequences of method calls
from large codebases, and indexes them into statistical lan-
guage models such as N-gram and Recurrent Neural Networks.

e A synthesis procedure that takes as input a partial program with
holes and leverages probabilities learned in the language model
to discover code completions for the holes. Our

SLANG: inference phase

by tracking for each object o

- Generate Abstract Histories

code snippet with holes

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) ({
ArrayList<String> msgList =
smsMgr.divideMsg (message);
? {smsMgr, msglList} // (H1)
} else |
? {smsMgr, message} // (H2)
}

static analysis

abstract histories of objects

smsMgr + {(getDefault,ret) - (H2) ,

msgList ~— {(divideMsg,ret)- (H1)}

learned generative model:
* bigrams suggest candidates
* n-grams / RNNs rank them

> message +~ {(length,0) , (length,0)-(H2)}

- Sequence of events, generated

(getDefault, ret) . (divideMsg,O) . (Hl)}

Partial History Id | Candidate Completions Pr
11 (getDefault, ret) - (sendTextMessage, 0) 0.0073
(getDefault, ret) - (N3, smaligr) 12 | _(getDefault, ret) : (sendMultipartTextMessage, () 0.0010
. 21 | (getbDefault,ret) - (divideMsg,0) - (sendMultipartTextMessage,0) | 0.0033
(getpefault, ret) - (divideMsg, 0) - (B1, smsMgr) 22 | (getDefault,ret) - (divideMsg,0) - (sendTextMessage,0) 0.0016
31 | (length,0) - (length,0) 0.0132
32 (length,0) - (split,0) 0.0080
(1ength, 0) - (B2, message) 33 | (length,0) - (sendTextMessage, 3) (10017|
34 | (length.U) - (sendMultipartTextMessage, 1) 0.0001
(divideMsg, ret) - (H1,msgList) 41 | (divideMsg, ret) - (sendMultipartTextMessage, 3) 0.0821

SLANG

Predicts completions for sequences of API calls

Treats programs as (sets of) abstract histories
* Performs static analysis to abstract programs into finite histories

Training: learns bigrams, n-grams, RNNs on histories

Inference: given a history with holes
* Uses bigrams to get possible completions
e Uses n-grams / RNN to rank them
* Combines history completions into a coherent program

Features: fast (very little search)
Limitations: all invocation pairs must appear in training set

Statistical Models in Synthesis

Data [Pu et al: sk_p: a neural program
corrector for MOOCs. SPLASH’16]

spec -> program

DSL/task

Model

Sh p A Data-driven Synthesis approach

def evaluatePoly (poly, x):

a—=0
. f =00
Input: incorrect program for a in range(0, len(poly) — 1):
. f = poly[a]#x**a+f
+ test suite a+=1
return f

sk_p

def evaluatePoly(poly, x):
a—==0
f =0.0
| while a < len(poly): |
Output: corrected program f — poly[a]sx**a-+f
a+=1
return f

sk_p : A Data-driven Synthesis approach for MOOC

Main ldea:

®* A learning algorithm is used during training time to produce a model of the
problem at hand.

® Given an incomplete or erroneous program (the seed program), this model can
produce a distribution of candidate completions or corrections.

®* This distribution is used by a synthesis algorithm to find candidate solutions that

have high probability according to the model and also are correct according to a
potentially incomplete specification.

sk p

—
def evaluatePoly(poly, x): _start__
a—==0 . . x2 =0
f—00 normalize variables x3 = 0.0
for a in range(0,len(poly) — 1): for x2 in range (0, len (x0) —1):
f = poly[a]*x**a+f > x3 —x0[x2] * x1 #* x2 + x3
a4+=1 x2 +—1 extract
return f ef:;lll'n x3 pa rtlal
fragments
def evaluatePoly(poly, x): Partial Fragment 1:
a=0 _start_
f =0.0 I l
while a < len(poly): ~
f = poly[a]*x**a+f x3 = 0.0
a+=1 Partial Fragment 2:
return f x2 = 0

| |
neural net for x2 in range (0 , len (x0)

(seq2seq) Partial Fragment 3:

beam search
0.141, while x2 < len (x0): x3 = 0.0
0.007, for x4 in range (len (x0)) : < I |
0.0008, for x4 in range (0) : x3 = x0 [x2] * x1 ** x2 + x3

Trained on a corpus of correct program fragments

Training

® Each correct fragment is converted to an input-output training pair:

®* The partial fragment (with a hole) is the input, and the missing statement is the
output.

Example Training Input:
else:

I |
x2 4= x0[x3] » (x1 =% x3)

Example Training Output:

while x3 < len (x0) :

sk p

—
def evaluatePoly(poly, x): _start__
a—==0 . . x2 =0
f—00 normalize variables x3 = 0.0
for a in range(0,len(poly) — 1): for x2 in range (0, len (x0) —1):
f = poly[a]*x**a+f > x3 —x0[x2] * x1 #* x2 + x3
a4+=1 x2 +—1 extract
return f ef:;lll'n x3 pa rtlal
fragments
def evaluatePoly(poly, x): Partial Fragment 1:
a=0 _start_
f =0.0 I l
while a < len(poly): ~
f = poly[a]*x**a+f x3 = 0.0
a+=1 Partial Fragment 2:
return f x2 = 0

| |
neural net for x2 in range (0 , len (x0)

(seq2seq) Partial Fragment 3:

beam search
0.141, while x2 < len (x0): x3 = 0.0
0.007, for x4 in range (len (x0)) : < I |
0.0008, for x4 in range (0) : x3 = x0 [x2] * x1 ** x2 + x3

Trained on a corpus of correct program fragments

Program corrections for MOOCs

Treats programs as a sequence of tokens
e Abstracts away variables names

Uses the skipgram model to predict which statement is most
likely to occur between the two

Features
* Can repair syntax errors
Limitations
* Needs all algorithmically distinct solutions to appear in the training set

Statistical Models in Synthesis

Data [Lee et al: Accelerating Search-Based Program Synthesis
using Learned Probabilistic Models. PLDI'18]

spec -> program

DSL/task

el
" o> Model

Euphony

Trains a PHOG on a corpus of solutions to simple problems
Uses it to guide top-down search with A*
Normalizes constants (transfer learning)

Statistical Models in Synthesis

Data [Balog et al: DeepCoder:
Learning to Write Programs. ICLR"17]

spec -> program

DSL/task

A
0l pas® Model

Learning Inductive Program Synthesis (LIPS)

* DSL and Attributes
®* An attribute function A: Program P in DSL -> Finite Attribute Vectors A (P).
®* E.g. Presence or absence of HOFs, like does the program contain sort
* Attributes are a link between ML and Search.
* ML predicts q (A(P) | Observations)
Data Generation: Synthetic data generation in DSL
* ML Model

® Search

DeepCoder

® An Instance of LIPS
® DSL and Attributes:

* Attributes: binary attributes indicating the presence or absence of high-level
functions in the target program. To

® DSL : A query language like SQL or LINQ using High-level functions over lists.

a< [int] An input-output example:

b < FILTER (<0) a Input:

c < MAP (x4) b (-17, -3, 4, 11, O, -5, -9, 13, 6, 6, -8, 11]
d <~ SORT ¢ Output:

e < REVERSE d [-12, -20, -32, -36, —-68]

DeepCoder

* Data Generation
®* Enumerate Programs in DSL and Pruning.

* To generate valid inputs for a program, they enforce a constraint on the output value
bounding integers to some predetermined range.

* ML Model

* Employs Encoder-Decoder NNs to model and learn the mapping from input-output
examples to attributes.

® learns to predict presence or absence of individual functions of the DSL.

®* Search

® DFS, Sketch and A2

DeepCoder

Input: [O-examples [-17 -3 411 0 -5 -9 13 6 6 -8 11]
-2 [-12 -20 -32 -36 -68]

+ DeepCoder

<- [int]

<- Filter (<@) a
<- Map (*4) b

<- Sort c

<- Reverse d

Output: Program in
a list DSL

T Q Nn T W

DeepCoder

Input: 10-examples

[-17 -3 411 0 -5 -9 13 6 6 -8 11]
> [-12 -20 -32 -36 -68]

— =

— % n x — g >

{ o) E = & a @ £ 2 z s =

2 ~ =~ ~ 2. N =~ ~ =~ ~ B =B 2 a ¥ o = X 5 5 X
T 7§ e 7 PEg§FErRE $ 2 g 253 g9 &3 2 23 2% %3
Component T LB S L 2 s S 2 5 0 8 = I 3 = L wn £ F O @ N = s = O = = 0
. . .0 0 1 .0 0 0 .0 0 .0 0 .0 .0 .0 .0 1 0 4 0 2 1 0 .0 .0 0

likelihoods . . _

neural network

N (0/02==0) ﬁ

l existing search technique +
sort-and-add

Output: Program in
a list DSL

DeepCoder

Predicts likely components from |O examples

Features
* Trained on synthetic data
e Can be easily combined with any enumerative search
* Significant speedups for a small list DSL

Limitations
e Unclear whether it scales to larger DSLs or more complex data structures

* e.g. uses a simple feed-forward neural net, cannot encode arbitrary-
length examples

Statistical Models in Synthesis

Data [Delvin et al: Neural Program Learning under Noisy |10 ICML 17]

spec -> program

...................................... O RobustFill

DSL/task

el
5(-00° Model

RobustFill, aka neural FlashFill

______inputString | Output String concat

ToCase(

jacob daniel devlin Devlin, J. GetT‘;';;Z(t

. Type=Word,

onathan uesato Useato,)) _

’ RobustFill Fvperndex= 30

Surya Bhupatiraju Bhupatiraju S. Const)(/E, ..),p ¢

Rishabh g. singh Singh, R. _’ Tocagﬁésuing(

| n GetTok
abdelrahman mohamed Mohamed, A. © gnzz(t’
. . - Type=Word,

pushmeet kohli Kohli, P. ngexﬂ),
Start=0,
End=1),

Type=Proper),
Const("."))

RobustFill: PBE as Seg25Seq with Attention

Next program token

Embedding
@ @ Previous program token

Each sequence is encoded with a non-attentional LSTM
- final hidden state is used as the initial hidden state of the next LSTM.

Attention

Key idea: Summarizing into a single vector is a big bottleneck. Every
output should have direct access to the whole input

Exploit some degree of locality:

e different tokens of the output depend primarily on small subsets of
tokens from the input.

e attention mechanism allows each output token to pay attention to a
different subset of input tokens.

RobustFIll

Key Idea: use attention within an individual input/output pair,
but then aggregate over the distributions proposed from each of
the examples.

in: "Armando Solar-Lezama"
out: "A. Solar-Lezama"
Program: Concat{SubString(in, Pos("'", Word), Pos(Char,"")},

SubString(in, Pos(" ",Word), Pos("", End));

Three Parts: an expression that extracts the first initial,
concatenated with a constant,
an expression that extracts everything after the first space

RobustFill

Concat (ToCase (GetToken (input , Type=Word ..

T

ey ideas:
Program Decoder Pooling
Embed I/O examples with LSTM encoders —L J A
Emit program tokens with LSTM decoders ' * 7" = dan et mmde vy —I_.

Train from large-scale random data

Devlin, <sp>J .

Input String Encoder LSTM 1

jonathan<sp>uesato

Program Decoder LSTM [

Output String Encoder LSTM

Uesato, <sp>J

RobustFill

Key ideas:
Embed I/0 examples with LSTM encoders
Emit program tokens with LSTM decoders
Train from large-scale random data

Architecture:

* Pooling across examples at each step to
predict one program token

* Attention to examples during program
decoding
Beam search with execution constraints

* Execute decoded subexpressions; remove
programs whose outputs are not prefixes
of the target

Concat (ToCase (GetToken (input , Type=Word ..

Input String Encoder LSTM

jacob«<sp>daniel <sp> delen Program Decoder LSTM |
Output String Encoder LSTM

Devl1lin, <sp>J.

Input String Encoder LSTM 1

jonathanc«<spruesato

Output String Encoder LSTM I

Uesato, <sp>J

Single-Example Sub-Network
Basic Seq-to-Seq Attention A

u-z-n--[:-

Attention-B Attention-C

I

Program Decoder Pooling

Program Decoder LSTM [

Multi-Example Pooling

| Output Softmax |
== — MaxPool
L) "0 P ' +

RobustFill

IO examples to program translation as a Seq2Seq task

Features
* Trained on synthetic data
* Unlike FlashFill, does not require inverse semantics

Limitations
* Does not guarantee consistency with |O examples
* Requires constraints/postprocessing to ensure grammar syntax
* Hard to design synthetic data generation realistically

Statistical Models in Synthesis

Data [Kalyan et al: Neural-Guided Deductive Search ICLR"18]

spec -> program

DSL/task

el
" pa° Model

Deductive Search

alice liddell To: al
- bob o’reilly To: bo

Output

Concat] al
bo 1. Select a hole.
i C@at 2. Select an operator to expand.
3. Propagate the examples.
[Constant @/ \® bag P

l v/ Correct by construction
a 1

"TO: n
b o]

v/ Constraint propagation exists

for many operations & domains
v/ Easy to add a ranking function
XK Exponentially slow

Deductive Search

Search Space

> /0 Examples < /;/TI é. L Eogramj]

Ccoon
Why so slow? Explores the entire search space
(unless deduction prunes some of it)

DeepCoder: Learning to Write Programs

|dea: Order the search space based on a priority list from DNN before starting

Search Space

(

y /O Examples < .

J

'>n
Y/
B

/

N\
\
(1

“ Progra m?

g
g
[
'___
@
@
©

Concat
SubStr
ConstStr
ITE

AbsPos
RegexPos
DateFormat

Search Priorities 37

Neural-Guided Deductive Search

|dea: Order the search space based on a priority list from DNN at each step

Search Space
a
@

} |/O Examples < /////\> f i Erogramj
' =an

a

Concat
SubStr
ConstStr
ITE

AbsPos
RegexPos
DateFormat

Search Priorities 34

Search branch prediction

Collect a complete dataset of intermediate search results:

at a search branch N == F;(...) | F,(...) | ==+ | Fx(...)
given a spec @ = {x w y}
produced programs Pj, ..., Px with scores h(Py, @), ..., h(Py, @)

A ranking function h

Learn a predictive model f s.t. f(F}-, <p) ~ h(P-,cp)
* @ is an input-output example spec: ¢ = {x — y}
* f: (enum production_id, string x, string y) -> float

Train using squared-error loss over program scores:

Objective: L(f; E;, <P) = [f(F}': 90) — h(P" ‘P)]Z

LSTM-based Model for predicting the score

Input encoder LSTM

Production ID T T

Substring alice liddell

Output encoder LSTM

Char embedding

To: al

Predicted

program
score

Search

Picking just the topmost rule to expand may be incomplete

Threshold-based
* For a fixed threshold 6
* explore all branches within B from the best

Branch-and-bound
* Explore branches depth-first in the order of scores

* Discard unexplored branches if they are predicted to be worse th:
current optimum

Next Reading

® Kalyan et al: Neural-Guided Deductive Search ICLR’18

Statistical Models in Synthesis

Data [Chen et al: Execution-Guided Neural Program Synthesis ICLR"18]

spec -> program

--- @® execution-guided

DSL/task

Model

Takeaways

Neural networks excel at noticing patterns in input data
e don’t expect magic, task must be solvable by a human

Needs appropriate network architecture
e e.g. LSTM for sequential examples, CNN for grids, ...

Needs a search algorithm

 A* branch-and-bound, beam, MCTS, sequential monte-carlo, ...

Takeaways (training)

To train a model, you need enough data + appropriate loss
* For NNs: 10-100K diverse data points for an “average” task

How to increase data efficiency?

e abstract the programs (Slang, Skip, Euphony)

» for spec->program can use synthetic data because we are learning
semantics, not properties of the corpus (DeepCoder, Robustfill)

* the less context the guidance needs, the more data points we can
extract from a given set of programs (NGDS)

Plan for the week

® Today : Pre-LLM Era
® statistical language models for code
® neural architectures
® better search with neural guidance

® Next/Last Class of the session : LLM Era
® synthesis from natural language

®* how can we make LLMs generate better code?

