
Synthesis with Abstract
Interpretation

with inputs from Armando Solar-Lezama

History
• POPL 77 paper by Patrick Cousot and Radhia Cousot

• Brings together ideas from the compiler optimization community with
ideas in verification
• Provides a clean and general recipe for building analyses and reasoning

about their correctness

Key idea 1: Abstract domain

x=5

x=7
x=9

x=-7
x=-5

x=-2

x=4

x=6

x := x + 2

 {𝐸[𝑥 ↦ 𝑥 + 2]}𝑥 ≔ 𝑥 + 2 {𝐸}

x=7

x=9
x=11

x=-5
x=-3

x=0

x=6

x=8

Concrete states New concrete statesConcrete semantics

Key idea 1: Abstract domain

x=5

x=7
x=9

x=-7
x=-5

x=-2

x=4

x=6

x := x + 2

𝑂𝑑𝑑 + 𝑂𝑑𝑑 = 𝐸𝑣𝑒𝑛𝑂𝑑𝑑 + 𝐸𝑣𝑒𝑛 = 𝑂𝑑𝑑𝐸𝑣𝑒𝑛 + 𝐸𝑣𝑒𝑛 = 𝐸𝑣𝑒𝑛𝐸𝑣𝑒𝑛 + 𝑂𝑑𝑑 = 𝑂𝑑𝑑

x=7

x=9
x=11

x=-5
x=-3

x=0

x=6

x=8

Abstract states New abstract states

Even

Odd

Abstract semantics

Even

Odd

Abstract values form a lattice

𝐸𝑣𝑒𝑛 𝑂𝑑𝑑

𝐴𝑛𝑦𝑡h𝑖𝑛𝑔

𝑁𝑜𝑡h𝑖𝑛𝑔

𝐸𝑣𝑒𝑛 ⊑ 𝐴𝑛𝑦𝑡h𝑖𝑛𝑔
𝑂𝑑𝑑 ⊑ 𝐴𝑛𝑦𝑡h𝑖𝑛𝑔
𝑁𝑜𝑡h𝑖𝑛𝑔 ⊑ 𝐸𝑣𝑒𝑛
𝑁𝑜𝑡h𝑖𝑛𝑔 ⊑ 𝑂𝑑𝑑

Often called ⊤

Often called ⊥

Abstract Domain

• An abstract domain is a lattice
• Although some analysis relax this restriction.
• Elements in the lattice are called Abstract Values

• Need to relate elements in the lattice with states in the program
• Abstraction Function:

• Maps a value in the program to the “best” abstract value

• Concretization Function:
• Maps an abstract value to a set of values in the program

• Example:
• Parity Lattice

𝛽:𝒱 → 𝐴𝑏𝑠

𝛾 :𝐴𝑏𝑠 → 𝒫(𝒱)

Concretization

𝑂𝑑𝑑 𝐸𝑣𝑒𝑛

𝐴𝑛𝑦𝑡h𝑖𝑛𝑔

𝑁𝑜𝑡h𝑖𝑛𝑔

x=5

x=7
x=9

x=-7
x=-5

x=-2

x=4

x=6

∅

Abstraction

𝑂𝑑𝑑 𝐸𝑣𝑒𝑛

𝐴𝑛𝑦𝑡h𝑖𝑛𝑔

𝑁𝑜𝑡h𝑖𝑛𝑔

`

x=5

x=7
x=9

x=-7
x=-5

x=-2

x=4

x=6

∅

An Abstract Interpretation

Example: AI

Key idea 2: Abstract Interpretation

• Compute an abstract value for every program point
• Abstraction of the set of states possible at that point

• Iterate until computation converges

Example

x = _input();

x = x * 2;

y = 0;

while(x < 16){

 x = x – y;

 y = 2 + x;

}

L1

L0

L2

L3

L4

x = _input();

x = x * 2;

y = 0;

 x = x – y;

 y = 2 + x;

X<16

end

L0

L1

L2

L3

L4

𝑥 = ⊤ 𝑦 = ⊤

assert isEven (y)

Example

x = _input();

x = x * 2;

y = 0;

while(x < 16){

 x = x – y;

 y = 2 + x;

}

L1

L0

L2

L3

L4

x = _input();

x = x * 2;

y = 0;

 x = x – y;

 y = 2 + x;

X<1
6

end

L0

L1

L2

L3

L4

𝑥 = ⊤ 𝑦 = ⊤

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

assert isEven (y)

Example
x = _input();

x = x * 2;

y = 0;

 x = x – y;

 y = 2 + x;

X<1
6

end

L0

L1

L2

L3

L4

𝑥 = ⊤ 𝑦 = ⊤

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

𝑥 = 𝑒𝑣𝑒𝑛 𝑦 = 𝑒𝑣𝑒𝑛

x = _input();

x = x * 2;

y = 0;

while(x < 16){

 x = x – y;

 y = 2 + x;

}

L1

L0

L2

L3

L4 assert isEven (y)

Some useful domains

• Ranges
• Useful for detecting out-of-bounds errors, potential overflows

• Linear relationships between variables
•

• Problem: Both of these domains have infinite chains!

𝑎1𝑥1 + 𝑎2𝑥2 + … + 𝑎𝑘𝑥𝑘 ≥ 𝑐

Widening

• Key idea:
• You have been running your analysis for a while
• A value keeps getting “bigger” and “bigger” but refuses to converge
• Just declare it to be (or some other big value)

• This loses precision
• but it’s always sound

• Widening operator:
•
•

⊤

𝛻:𝐴𝑏𝑠 × 𝐴𝑏𝑠 → 𝐴𝑏𝑠
𝑎1 𝛻 𝑎2 ⊒ 𝑎1, 𝑎2

Abstract Interpretation for
Synthesis

Example: Simple Case

x = _input();

x = x * ??1;

y = 0;

while(x < 16){

 x = x – y;

 y = ??2 + x;

 assert even(y)

}

L1

L0

L2

L3

L4

x = _input();

x = x * ??1;

y = 0;

 x = x – y;

 y = ??2 + x;

X<1
6

end

L0

L1

L2

L3

L4

𝑥 = ⊤ 𝑦 = ⊤

𝑥 = 𝑥𝑙1 𝑦 = 𝑦𝑙1

𝑥 = 𝑥𝑙3 𝑦 = 𝑦𝑙3

𝑥 = 𝑥𝑙2 𝑦 = 𝑦𝑙2

Synthesis using AI: Simple
Case

Definitions for +, -, etc.
are given in the abstract domain

Solution: ??1 = even , ??2 = even

Concretize: ??1 = even , ??2 = even

Core Idea: Do the synthesis in the abstract domain and then concretize

Storyboard Programming: An abstract
domain for heap-based data structures

next f e
mid

a b

e’ f’
mid’

a b

head

next

next next

head

idea : Allow the programmer to describe the behavior of a data-structure manipulation by using abstract shapes as input/
output examples.

Concrete node

Abstract node

Storyboard

• Three Inputs:
• a set of scenarios,

• each of which corresponds to an abstract input-output pair;
• a set of fold and unfold definitions,
• a skeleton of the looping structure of the desired algorithm

Scenarios for LL-reversal

a b
next

head

a b

head

next

a

head

a

head

head

head

f e
mid

a b

head

next next

e’ f’
mid’

a b
next next

head

Inductive insights about the datastructure
with fold/unfold

f e
mid

f’ e’
mid

x’
next

x’x’ = f
x’= e

x’ = f
e = e’

Unfold:

Inductive insights with fold/unfold

f e
mid

f’ e’
mid

x’
next

x’x’ = f
x’= e

x’ = f
e = e’

Unfold:

f e
mid

f’ e’
mid

x’
next

x’x’ = f
x’= e

x’ = f
e = e’

Fold:

Fold/Unfold
• These rules are part of the specification

• without them the scenarios are too imprecise

• They can also serve to communicate insights

f

b

stree
stuff

y

stuff’
y

stuff’
f’

b’

stree’

stuff

y

f’

b’

stree’val ==y.val
f=b=y

val < y.val
f=y

b=b’

val > y.val
f=y

b=b’

Underspecified
summary node

Next Reading:

Rishabh Singh, Armando Solar-Lezama, Synthesizing data structure manipulations from
storyboards, 2011

https://doi.org/10.1145/2025113.2025153
https://doi.org/10.1145/2025113.2025153

