Synthesis with Abstract
Interpretation

with inputs from Armando Solar-Lezama

History

POPL 77 paper by Patrick Cousot and Radhia Cousot

« Brings together ideas from the compiler optimization community with
ideas in verification

o Provides a clean and general recipe for building analyses and reasoning
about their correctness

Key idea 1: Abstract domain

Concrete states Concrete semantics New concrete states

X:=X+2

{E[x|—>x+2]}x==x+2{E}

Key idea 1: Abstract domain

Abstract states Abstract semantics New abstract states

X:=X+2

Abstract values form a lattice

Often called T

Anything
Even C Anything

Odd C Anything

Evm\ /Odd Nothing E Even
Nothing C Odd

Nothing

Often called L

|

Abstract Domain

An abstract domain is a lattice
o Although some analysis relax this restriction.
 Elements in the lattice are called Abstract Values

Need to relate elements in the lattice with states in the program

e Abstraction Function: f: 7" — Abs
« Maps a value in the program to the “best” abstract value

e Concretization Function: y: Abs — P(7")
« Maps an abstract value to a set of values in the program

Example:
o Parity Lattice

Concretization

Abstraction

An Abstract Interpretation

Components of an abstract interpretation:

@ Set of abstract states D, forming a complete lattice.

o “Concretization” function 7 : D — 253t which associates a set of
concrete states with each abstract state.

@ Transfer function f, : D — D for each type of node n, which
“Iinterprets” each program statement using the abstract states.

Example: Al

@ Abstract lattice D

(oe, oe)

L
(o, oe)oM \o (oe, e 10 (e, oe)

(0,0)® (o0,¢€ (e,0) @ (e, e)

@ Transfer function for an assignment node n: p := p+q

(1 if sis L
(o,s[q]) if s[p] is o and s[q] is e,
or s[p] is e and s[q] is o
(e,s[qg]) if both s[p] and s[q] are o
or both s[p] and s[q] are e
| (oe,s[q]) otherwise

fn(s) = 4

@ The concretization function
o ¥((oe, 0e)) = State, y(L) = 0, ¥((o,0e)) = {(m,n) | mis odd}
o Y((o,€)) = {(m,n) | mis odd and n is even}, ...

Key idea 2: Abstract Interpretation

Compute an abstract value for every program point
o Abstraction of the set of states possible at that point

Iterate until computation converges

Example

LO
X = _input();
X=x%2;
L1 y=0;
L2 while(x < 16){
X=X-Y;
L3 y=2+X;
} assert isEven (y)
L4

L4

end

Example

LO

L1
L2

L3

L4

X = _input();

X=x%2;

y=0;

while(x < 16){
X=X—Y;
y=2+X;

}

assert iskven (y)

X = eveny = even

Den'y = even

L2

X=XV,

y=2+X;

13~

L4 X =eveny = even

end

X = eveny = even

Example

LO

L1
L2

L3

L4

X =_input();

X=x%*2;

y=0;

while(x < 16){
X=X-Y,;
y=2+X;

}

assert iskven (y)

X = eveny = even

Den y = even

L2

X=X-Y,
y=2+X;
L3

L4 X =eveny = even

end

X = eveny = even

Some useful domains

Ranges
o Useful for detecting out-of-bounds errors, potential overflows

Linear relationships between variables

cax;taxX,+...+aqx, 2c

Problem: Both of these domains have infinite chains!

Widening

Key idea:
e You have been running your analysis for a while
« A value keeps getting “bigger” and “bigger” but refuses to converge

 Just declare it to be T (or some other big value)

This loses precision
o but it’s always sound

Widening operator: V: Abs X Abs — Abs
e al Va2 dal, a2

Abstract Interpretation for
Synthesis

Example: Simple Case

LO
X = _input(); X=Xn1Y=¥Yn
X=X*7??;
X=XpYV=DInp
L1 y=0;
L while(x < 16){ L2
X=X=Y; X=X=y;
L3 y=7??2+x y=22+X%
assert even(y) L3 x= X3V =)n3

L4
} L4

end

Synthesis using Al: Simple
Case

= | %77 Y = even
zip = lub(zn, zi3) Yy = lub(yn, yis)
T3 = Ti2 — Y2 Yz =172 + g3
T13 = even

Definitions for +, -, etc.
are given in the abstract domain

Solution: ??1 = even, ??2 = even
Concretize: ??1 = even, ??2 = even

Core Idea: Do the synthesis in the abstract domain and then concretize

Storyboard Programming: An abstract
domain for heap-based data structures

head
___________ Abstract node
\ """ mld N\\\
a S0 f s e V"X b
Concrete node e
head
""""" mid’ . /

idea : Allow the programmer to describe the behavior of a data-structure manipulation by using abstract shapes as inp
output examples.

Storyboard

Three Inputs:
e a set of scenarios,
e each of which corresponds to an abstract input-output pair;
¢ a set of fold and unfold definitions,

e a skeleton of the looping structure of the desired algorithm

Scenarios for LL-reversal

head
<" mid T~
next I’ 2\ nex
B> e)% b
N\ /l
___________ \E4
head

27 mid N
ext \ ext
a)e—i ¢ () b
A
N\
v 0 e

Inductive insights about the datastructure
with fold/unfold

Unfold:

-
e

-
e

’
\\\\\
o -
——————————

’
\\\\\
o -
——————————

Inductive insights with fold/unfold

Unfold:

= -
e i = X
. mid >~ '=
II’ \\\ - e
1 f e o o \
{ |
N\ e /
\\ /,
~ td
\s~~_ —,a” id
_______ , ’¢¢’ . S~o
W = f - mid "~
X' next ¢ , S
. ﬁ f e o o 7\
e=ep \ €)
N /
\\\ ,/’
s~~~_ _—,4’
Fold:
L]
’ —
7
, X
LT T T~
e mid .
K \
________ { \
za’— . =~ \)
x' =f o mid T~ \t S .
’ neXt l, ’ \\ \\\ /I’
—_ A’ X — f s o o A o g
e _ e { e \ Swo —”
\)] » TTEEesTT -
N /
N 4
\\ ’/’

-
o

Fold/Unfold

These rules are part of the specification
o without them the scenarios are too imprecise

They can also serve to communicate insights

/ y val > y.val
f=
'/’ \\ \,\\ 31,
/ N\ sTF 7 b=b
;osffy S
Val ==yva| ‘I DR \‘ I/' stree’ \
f b . 4 ,I e o o ‘\\
. —_ =y /) 7] \
TN .. &)
SUEN O A N
,/ \\\ / \
/ stree Vi
/ Py N\ / stuff v stuff N\
{ b) ! N val < y.val
_______________ ' DS _)
e / \ f—y
7N b=b’
4 N sty Underspecified
J/ stree’ (\)

summary node

———————————————

Next Reading:

Rishabh Singh, Armando Solar-Lezama, Svnthesizing data structure manipulations from
storyboards, 2011

https://doi.org/10.1145/2025113.2025153
https://doi.org/10.1145/2025113.2025153

