CS5733 Program Synthesis

#17. Hoare Logic and Synthesis

Ashish Mishra, September 24, 2024

With slides from Nadia Polikarpova and Yu-Fang Chen

Module II

Behavioral constraints
assertions + bounded guarantees

types + unbounded guarantees
pre/post-conditions

Program space

Search strategy)
constraint-based imperative programs w/ loops
deductive recursive functional programs

recursive pointer-manipulating programs

Last week

Behavioral constraints
assertions + bounded guarantees

types —— + unbounded guarantees
pre/post-conditions

Search strategy Program space

constraint-based
—p deductive

imperative programs w/ loops
—gp recursive functional programs
recursive pointer-manipulating programs

This week

Behavioral constraints
assertions + bounded guarantees

types — + unbounded guarantees
pre/post-conditions

Search strategy Program space

—Pp constraint-based
—» deductive

—P imperative programs w/ loops
recursive functional programs
——J recursive pointer-manipulating programs

Constraint-based synthesis

Behavioral constraints
= assertions, reference

implementation, pre/post encoding

» dc.Vx.0Q(c, x)

Structural constraints

Why is this hard?

Euclid (int a, int b) returns (int x) infinitely many inputs
requires a>0Ab >0 /

ensures x = gcd(a, b)

{
int x , y := a, b;
while (x !=y) {
if (X > y) x 1= 22%x + 2?*y + ??;
else y := ?2*x + ??2%y + ?7?;

H

/ infinitely many paths!

Loop unrolling is unsound and incomplete

Euclid (int a, int b) returns (int x)
requires a>0Ab >0

ensures X = gcd(a,b)

{
int x , y := a, b; /if(X!=Y){
if (x > y)

while (x I=vy) {

X 1= ?22¥X + 2%y + ?7?;

if (X > y) X 1= 22X + 2P*y + 22; Unroll with 1 ’
y [M e o o o y o o 9 depth:l e Se

y = ?22¥x + 2%y + ??;

else y := ?22*x + ??2*%y + ??;

1 \} assert !(x !=y);

Loop unrolling is unsound and incomplete

Euclid (int a, int b) returns (int x)
requires a>0Ab >0 Unsatisfiable sketch]

ensures X = gcd(a,b)
{ o
int x , y := a, b; if (x I=y) {
if (x > y)

while (x !=vy) {

Unroll with X 1= ??¥x + ¥y + ?7?;
o nroll wit
if (X > y) x 1= ?22*x + ??*y + 2?2, depth = 1 else

y = 22¥x + ??*y + ??;

else y := ?2?*x + ??*y + ??;

1} \} assert !(x !=y);

Loop unrolling is unsound and incomplete

What if we restrict inputs to
[1, 2]?

Euclid (int a, int b) returns (int x)
requires a>0Ab>0 Unsound solution! J

ensures X = gcd(a,b) \/
{
int x , y := a, b; if (x !=y) {
__ if (x > vy)
while (x !=vy) { X 1= O *%x + O*y 4+ 1;
if (X > y) X 1= 22%x + 2?*y + ??; else

Unroll with
depth=1
else y := ?2*x + ??%*y + ??; y := 0*x + O*y + 1 ;

1 \} assert !(x !=vy);

Constraint-based synthesis

Behavioral constraints
= assertions, reference

implementation, pre/post encoding

N dc.Vx.Q(c, x)

Structural constraints

If we want to synthesize programs that are correct on all inputs,
we need a better way to deal with loops!

Solution

Hoare logic = a program logic for simple imperative programs
* in particular: loop invariants

The Imp language

e ::=n | x
e+e|e-e|e*e]
e=e | e<e] le

c ::= skip
X 1= e
cC; C

if e then c else c
while e do c

Hoare triples

Properties of programs are specified as judgments

P} ciQ}

where ¢ is a command and P, Q: 0 = Bool are predicates

ceg.ifo=[x»2]andP=x>0thenPo =T

Terminology
e Judgments of this kind are called (Hoare) triples
e P is called precondition
* () is called postcondition

Meaning of Triples

The meaning of {P} c {Q} is:
e if P holds in the initial state o, and
* if the execution of ¢ from o terminates in a state o’
* then Q holds in o’

This interpretation is called partial correctness
e termination is not essential

Another possible interpretation: total correctness
* if P holds in the initial state o

 then the execution of ¢ from o terminates in a state (call it ¢')
e and Q holds in o’

Example: swap

{T}
X =X +VY; Yy :=X-Y; X :1=X-Y
X =

We have to express that y in the final state is equal to x in the
initial state!

Logical Variables

{(x=NAy =M}
X 1= X+Yy;y :=X-Y; X :1=X-Y
{x=MAy =N}

Assertions can contain logical variables
* may occur only in pre- and postconditions, not in programs
* the state maps logical variables to their values, just like normal variables

Inference system

®* Similar to the Logical System in PL and FOL.

® Called as the Hoare Logic

We formalize the semantics of a language by describing which
judgments are valid about a program
An inference system

* a set of axioms and inference rules that describe how to derive a valid
judgment

We combine axioms and inference rules to build inference trees
(derivations)

Semantics of skip

skip does not modify the state

(P jskip{P}

Semantics of assignment

x> 1
x>0} x=x+1 {777}

(222} x = x + 1 {x>1}

Semantics of Assignment

We begin with Foyld’s version of the assignment axiom
{P} X :=E{?}

The term E might contain X, e.g. E = X+1
An example: X := X + 1

The value of X after The value of X before
executing the statement executing the statement

We need to differentiate these two values!

Floyd’s version

We begin with Foyld’s version of the assignment axiom
{P} X :=E {?}

IV.(X=E[VIX] A P[VIX])

Intuition: we use new variable V to denote the old value of X

Notations

E[VIX] : _E .
P[V/X] replacing all free occurrences of X in P with V

Flyod’s version

We do not want to have quantifiers in the reasoning path!

Hoare’s backward semantics of assignment

X := e assigns the value of e to variable x

{Plx—el} x =e {P}

* Let o be the initial state

* Precondition: (P[x » e])a, i.e., P(a|x » Ale]o])
* Final state: ¢’ = a|x » Ale]o]

* Consequently, P holds in the final state

Hoare’s backward semantics

Backward reasoning

Hoare’s Assignment Axiom

{QIE/X]} X:=E {Q}

Read as If Q holds in the post-condition then ...

Let s be the state before X := E and s’ the state after.
So, s' = s[X — E] (assuming E has no side-effect).

Q[E/X] holds in s if and only if Q holds in s’, because

(1) Every variable, except X, has the same value in s and s’, and
(2) Q[E/X] has every X in Q replaced by E,

(3) Q has every X evaluated to E in s (s’ = s[X — E]).

Semantics of composition

Sequential composition ¢l ; c2 executes cl to produce an
intermediate state and from there executes c2

{P}ci{R} {R}cy {0}
{P}c1;c,{Q}

Example: swap (Plxe]} x =e {P)

. inference tree
leaves = axioms

assign
{x=NAy=M} x :=x+y {y=MAx—y=N}

assign
b= MAx =y =Ny i X -y oy = HAy =N
comp
{x=NAy=M} X :=x+y;y:=x-y {x—y=MAy=N}
assign
{x—y=MAy=N}Xx :=x -y {x=MAy=N}
comp

{x=NAy=M} X :=X+Yy;y :=X-Y; X:=X-y{x=MAy=N}

root = triple to prove

Proof outline

{Plxmel} x =e {P]

An alternative (more compact) representation of inference trees
{x=NAy=M}
=
{x+y) - ((x+y)—y)=MA(x+y)—y=N}
X =X+Y;
x—(x—-y)=MAx—y=Nj}

y =X -Y;
x—y=MAy =N}
X =X -Y

{x=MAy =N}

Try out example

P: {true} X:=2 ; Y:=X{X >0A Y=2}

(1) 2>0 A 2 = 2 < true (Integer arithmetic)

(2){2>0An2=2} X:=2{X>0 A X =2} (assignment axiom)
B){X>0AX=2}Y:=X{X>0AY =2} (assignment axiom)

(4) {true} X:=2 {X >0 A X =2} (by (1), we can replace 2>0 A 2 = 2 in (3) with true)
(5) {true} X:=2 ; Y:=X {X >0A Y=2} (by (3), (4), and composition rule)

Rule of consequence

{P'}c{Q’}
tP}c{d}

if PP AQ =0

Corresponds to adding = steps in a proof outline

Here P = P’ should be read as
e “We can prove for all states o, that P o implies P’ ¢”

Consequence rule

Consequence Rule
P= P {P}1S{Q}Q = Q
{P} S{Q}

» We can strengthen the precondition, i.e. assume more than we need

» We can weaken the postcondition, i.e. conclude less than we are
allowed to

Consequence rule

sequence Rule
_P=P{P}S{Q1Q=Q
—Es@

P,: {true A X < 10} X:=10 {X=10 v X=0}

(1) {true} X:=10 {X=10 v X=0} (by Assignment Rule)

(2) truenX<10 = true (by underlying logic)

3)X=10v X=0= X=10 Vv X =0 (by underlying logic)

(4) {true A X <10} X:=10 {X=10 v X=0} (by consequence rule, (2), and (3))

Consequence rule

Semantics of conditionals

{PAe}c{Q} {P A —e}c, {Q}
{P}if e thenc, elsec, {Q}

Example: absolute value

(7}

if x < 0 then
{TAx <0}

=
{—x = 0}
X 1= =X

. {x >0} {PAe}c; {Q} {P A —e}c, {Q}
e:>s{e_|(x <oy {P}if ethenc; elsec, {Q}

{x =0}
skip
{x =0}

{x = 0}

Hoare Logic
Continued...

Semantics of loops

{7} ci?]
{P}while e doc {Q}

Challenge: ¢ needs to execute multiple times with the same pre/post

Semantics of loops

loop invariant

T

U} cil}
{I}while e doc {I}

Challenge: c needs to execute multiple times with the same pre/post

Solution: make its pre and post the same!
 called aloop invariant

Semantics of loops

{INe}c{l}
{I}whileedoc {—e Al}

Challenge: ¢ needs to execute multiple times with the same pre/post

Solution: make its pre and post the same!
 called a loop invariant
e +strengthen the semantics with the info about the loop condition

Example: GCD

{x=NAy=MAN>0AM > 0}

—
{1/}
while x !=y do
{IN x#y}
if x > y then
X :1=X =Y
else
y : =y - X
{1/}
{IN x =1y}
=

x = gcd(N, M)}

Guessing the loop invariant:

X y
10 4
6 4.
2 4
2 2

10
10

10

10

Example: GCD

{x=NAy=MAN>0 AM > 0}

=
{gcd(x,y) = gcd(N,M) Ax,y > 0}
while x !=y do

{gcd(x,y) = gcd(N,M)Ax,y >0A x # y}
if x > y then
{ged(x,y) = gcd(N,M) A x # y Ax > y}
=
{gcd(x —y,¥) = gcd(N,M) Ax —y,y > 0}
X 1= X -y
{gcd(x,y) = gcd(N,M) Ax,y > 0}
else
=y - X
{gcd(x, y) = gcd(N,M) Ax,y > 0}
{gcd(x,y) = gcd(N,M)Ax,y >0A x =y}
=

x = gcd(N, M)}

Termination

loop variant / ranking function /
termination metric

N\

{fINneNr=R}c{INr <RAT =0}
{I}whileedoc {—e Al}

Example: GCD

while x != vy do

if x > y then
X :1= X =Y
else
y .=y - X

Example: GCD

{x=NAy=MAN>0AM > 0}
=
{gcd(x,y) = gcd(N,M) Ax,y > 0}
while x != vy do
{gcd(x,y) = gcd(NM)Ax,y >0Ax+y=RA x Y}
if x > y then
X 1= X -y
else
y =y - X
{gcd(x,y) = gcd(NM)Ax,y >0Ax+y<RAx+y =0}
{gcd(x,y) = gcd(N,M)Ax,y >0A x =y}
=

x = gcd(N, M)}

Program Verification

method Euclid (a: int, b: int) returns (gcd: int)
requires a > 0 & b > 0
ensures x == gcd(a,b)
{
var X, y := a, b;
while (x !=vy)
invariant y > 0 & x > 0 && gcd(x,y) == gcd(a,b) Qia correct!
decreases X + Yy Dafny >
{
if (x >y) { o can’t proof
X 1= X -Y;
} else { Y3 correctness
y i=Yy - X
}
}
}

Program synthesis

method Euclid (a: int, b: int) returns (gcd: int)
requires a > 0 && b > 0

ensures x == gcd(a,b)
{ found a correct program!
var X, y := ?; var x, y := a, b;
?; @ while (x != y)
while (?) invariant y > @ && x > 0 && gcd(x,y) == gcd(a,b)
invariant ? decreases X + y
decreases ? O
{ > if (x >y) {
X = X - VY;
?; } else {
} y =Y - X
?; }
o)

0 can’t find a (program,
invariant) pair that | can
prove correct

Verification = synthesis

Srivastava, Gulwani, Foster: From program verification to
program synthesis. POPL'10

* idea: make constraint-based synthesis unbounded by synthesizing loop
invariants alongside programs

* synthesized some looping programs with integers, including Bresenheim
algorithm

e won “Most Influential Paper” at POPL'20!

Qiu, Solar-Lezama: Natural Synthesis of Provably-Correct Data-
Structure Manipulations. OOPSLA’17
e same approach for pointer-manipulating programs

Verification = synthesis

Verification

Program logic l

verification Vo . Q(X)

condition

SMT l

VX

Synthesis

Program logic l

31 P.vx.Q(I,P,x)

unknown formulas for
invariants and commands

synthesizer for

loop-free programs l

program + @ e no solution

invariant

synthesis
constraint

How verification works

Verification

l

Vx.Q(x)

Step 1: eliminate loops

{pre}
init;
{inv }
{pre}
init; {inv A cond }
while (c) body ;
invariant inv (inv)
{ body; } —
final;
{post}

{inv A =(cond) }
final;
{post}

Step 2: generate \VVCs

{pre}
init =—p
{inv}
{pre}
1nit {inv A c}
while (c) —_—)
invariant inv; —’_'{ingfdy
{ body }
final
{post} \ {inv A =c}
final =——p>
{post}

pre}
init(x,x")
{inv[x » x']}

{inv A c}
body(x,x")
{inv[x » x']}

{inv A =c}
final(x,x")
{post}

Vx.

pre A init = inv'

A\

inv A c Abody = inv'

A\

inv A =c A final = post

)

|
verification condition

Vx.Q(x)

From verification to synthesis

Verification Synthesis
Vx.Q(x) 3 P.Vx.Q(l,P,x)
dx . :uQ(x)

SMT l

UNSAT / SAT

Program synthesis

{pre}
Si(x,x")
{pre) / {I[x » x']}
?ﬁ ile (2? {IAG}
! in\e/ar(‘.iérzt 2y —» Sp(x, x")
{ 22} {Ilx » x'1}
??
{post} \ (I A—G.]
S(x,x")
{post}

\

AS G [.Vx.

pre AS; = I'

A\

INGAS, =T

A\

I A=G A Sy = post

J

|
synthesis constraint

31 P.vx.Q(l, P, x)

Synthesis constraints

pre AS; = I’
INGAS, =T

I' A=G ASy = post

Domain for I, G: formulas over program variables

Domainfor S = {x"' = e, Ay’ =e, A+ | ey, ey, ... € Expr}
e conjunction of equalities, one per variables

Solving synthesis constraints

Can be solved this with...
e SyGuS solvers

.=
pre A5 =1 » Sketch
ING A Sb = [* Look we made an unbounded synthesizer out of
Sketch!
I' A=G A S = post e VS3 uses Lattice search

* More efficient for predicates

Component-based
synthesis using Hoare Logic

Component-based
synthesis (CBS)

library query

sort: list best_ksum: (I : list) -> (k : int) -> int

i/o examples

reverse: list -> list

49 62 82 54 76 _— 158
take: list -> int -> list k=2

sum: list

best_ksum | k = sum (take (reverse (sortl)) k)

56

CBS: with effectful
components

heap

library
N— f: list ref -> int -> list ref L= @ /
(I) — S ——
— —
— g: list ref -> —— /
S — S ——— ‘P

non empty list

query to a CBS

goal: (I : list ref) -> (s : int) -> int

the required heap state for
the g function is violated

=

A sound synthesizer must take changing a blowup in the space of
heap state and library protocol into account programs

A query over a mutable Table

add_and_incr : (tbl : table = s : string)—
type pair = Pair of float » int pair returns a pair type
type table = [string] ref . o—

table

add_tbl : adds a string in the table if not already {true}
present.

(*ensures*) updates the table to include s

. and increment size by 1

mem_tbl : checks if a string is in the table { mem (Tbl\s) A

size (Tbl) = e (Tbl) + 1};

fresh_str : returns a fresh string not in the table.

size_tbl : gives the size of the tbl Tbl, Tbl’ : [string]

average_len_tbl : gives a float value equall to
the average length of the strings in the table

add_and_incr (tbl : table = s :string) =
Maintains a Uniqueness 79
Invariant -

58

Effect agnostic CBS on query

violates uniqueness property of
add_tbl

add_and_incr (tbl : table = s : string) =

_ + add_tbl (tb, s);

x1 + average_len_tbl (tbl);

add_and_incr : (tbl : table = s : yl « size_tbl (tbl);
string)— return Pair (x1,y1)
(*requires®)
{true} : .
- n3ai add_and_incr (tbl : table = s : string) =
Vv . pair :
(*ensures*) n Pl < mem (s) splits control flow
{ mem (Tbl,s) A if (b1) then
size (Tbl)) = size (Tbl) + 1}; s1 « fresh_str (tbl);

_ + add_tbl(tbl, s1);

creates a fresh string if x1 « average_len_tbl (tbl);
s already in tbl y1 + size tbl (tbl);

return Pair (x1,y1)
else
_ + add_tbl (tbl, s);
x1 « average_len_tbl (tbl);
yl « size_tbl (tbl);

Cobalt solution return Pair (x1,y1)

59

Overview: Cobalt

Cobalt

Spec:
VY=x:7->{Plv:t{0O}

Library Specification

q

£

Backward

failed paths
{P1-02s-- -, Pn

f

£

Forward

£

CDCL

Backward synthesis

P = {(WP(g, WP(f,0))}

0 solution: i;g; f
[J

bWP(g, WP(f,0))}

T {WP(f,Q)}

{0}
Spec ¥ =x:7—- {P}v:t{QO}

61

Backward synthesis
P = {WP(g, WP(/, Q))}\/

V'=x:7- {Plv: _{WP(g WP(j,0)} ‘
/X

{WP(g, WP(j,Q))}
e X WP(g, WP(f,Q))}

Pre, = Post, = WP(f,Q)

solution: i;g; f

g
{WP(J',Q)}T {WP(h,Q)}T T{WP(f,Q)}
{0} {0} Pre; => Post; = Q
{0}

Spec ¥ =x:7—- {Plv:t{O}

62

Spec:

Forward synthesis

Y=x:7-> {Plv:t{Q

Library Specificatic

Cobalt
) o e: VY
L35
Backward
e:¥x
failed paths
{P1-p25 - - - Pn} <H’ €, lP,>
n
o
£33 {¥o
Forward CDCL

finite-depth Forward
synthesis

Spec W =x:7—-> {Plv:t{Q}
ﬁ\{SPw,f)}u Q)
QSP(SP(P,f),g)}v {0}

°SP(SP(P,f),g, Miv:HQ}
(SP(SP(P,f).8,..)} = {0Q]

solution: f; g; h...

64

finite-depth forward
synthesis

Spec ¥ =x:7— {Plv:t{Q}
{P} = Pre;

MSP(PJ)}U 1{Q)
(SP(P,f)} => Pre
[SP(SP(P, f),i)}v t{Qo e{ i

0 SP(SP(P, f),g)}v : t{Q}
& {SP(SP(SP(P, f),i).)}v : t{Q) &
X

GSP(SP(P,f),g, hiv:HQ}

l

X (SPSPP.fg 0} = {0 S

Avoid similar failing

explorations

exhausted functions or
max depth reached

solution: f; g; h...

65

Spec:
VY=x:7->{Plv:t{QO

Library Specificatic

CDCL search

Cobalt

J

N

q

£

Backward

failed paths
{pl’pz 9999 pn}

£

Forward

e:¥x

(H,e, V")

08| e

CDCL

Revisiting the query
Query

add_and_incr : (tbl : table = s : add_and_incr (tbl : table « s :string) =
string) = bl < mem (s);
(“requires”) if (b1) then
{true}. 2?7 {(mem(Tbl, s)}
Vv :pair T
(*ensures®) Q Vv : pair
{ mem (Tbl,s) A {mem(Tbl’, s)
size (Tbl') = size (Tbl) + 1}; A size(Tbl") =

size(Tbl) + 1}

else
7 ..

67

finite-depth CDCL search

Avoid exploring F9 w k=5
by learning from F7 dear_tbutbl)

AN =cinoce

Q Q Q’ - s2 <— fresh_str()

1 <- add_tbl(tbl, s) l

F

F4 —»| F5
[s : string;
clear tbl tbl)

tbl : table], (mem(tbl, s)) -
{PIH{O}
s3 <— fresh_ptr()

5, P [Q
f-/‘\ For every progressing

F7 |sP@ Fo—F7) | Pre } T, trUanci’:led path ;mder F9)
, there exists a

learn DI]§7 =< Sp, Tp smaller path under !:5

For every non-truncated
path under F9 there is

s1 <= fresh_str() an equivalent non-
truncated path under F7

fresh_str

F10-1 [SP(R... F10-1) | Pre,yq 4

F9 and F7 are k-equivalent modulo
stuckness

Synthesis guarantees

* The synthesis algorithm is sound and complete.

Theorem (Soundness): For a given (I, X, WIf Cobalt synthesizes a term
e then I'Fe:¥ Type Environment, Library and
Specification

Theorem (Completeness): For all k, for a given (I Z, ¥)Cobalt
fails to find a solution then there exists no e of size () <= k, such that
I'Fe:¥

69

