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Type-driven program synthesis
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programsearchspecification

programmer-friendly
informative

help prune 
the search space



Which program do I have in mind?
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Char -> String -> [String]

a -> Int -> [a]

split string at custom separator

list with n copies of input value



Type-driven program synthesis
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program

context

type

type system
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What is a type system?

Deductive system for proving facts about programs and types

Defined using inference rules over judgments

typing judgement

“under context Gamma, term e has type T”



A simple type system: syntax
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example program: increment by two 𝜆𝑥. 𝑥 + 1 + 1



A simple type system: syntax
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Inference rules = typing rules
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Typing derivations

A derivation of Γ ⊢ 𝑒 ∷ 𝑇 is a tree where
1. the root is Γ ⊢ 𝑒 ∷ 𝑇

2. children are related to parents via inference rules

3. all leaves are axioms
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Typing derivations

let’s build a derivation of 

we say that 𝜆𝑥. 𝑥 + 1 is well-typed in the empty context
and has type Int → Int
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⋅ ⊢ 𝜆𝑥. 𝑥 + 1 ∷ Int → Int



Typing derivations
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⋅ ⊢ 𝜆𝑥. 𝑥 + 1 ∷ Int → Int



Typing derivations

is (𝜆𝑥. 𝑥) + 1 well-typed (in the empty context)?

no! no way to build a derivation of ⋅ ⊢ (𝜆𝑥. 𝑥) + 1 ∷ _

we say that (𝜆𝑥. 𝑥) + 1 is ill-typed
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Let’s add lists!
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Example program: head with default
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𝜆𝑥. match 𝑥 with 𝑛𝑖𝑙 → 0 | 𝑦: 𝑦𝑠 → 𝑦



Typing rules
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what should the t-match tule be?



Typing rules
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Example: head with default
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⋅ ⊢ 𝜆𝑥. match 𝑥 with 𝑛𝑖𝑙 → 0 | 𝑦: 𝑦𝑠 → 𝑦 ∷ List → Int



Type system → synthesis
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program

context

type

type system
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Enumerating well-typed terms

how should I enumerate all terms of type List → List?
(up to depth 2, in the empty context)

naïve idea: syntax-guided enumeration
1. enumerate all terms generated by the grammar

2. type-check each term and throw away ill-typed ones 
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Syntax-guided enumeration

29

31 complete programs enumerated

only 2 have the type List → List!

can we do better?



Enumerating well-typed terms

how should I enumerate all terms of type List → List?
(up to depth 2, in the empty context)

better idea: type-guided enumeration
enumerate all derivations generated by the type systems

extract terms from derivations (well-typed by construction)
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Synthesis as proof search

input: synthesis goal Γ ⊢ ? ∷ 𝑇

output: derivation of Γ ⊢ 𝑒 ∷ 𝑇 for some 𝑒

search strategy: top-down enumeration of derivation trees
like syntax-guided top-down enumeration but

derivation trees instead of ASTs

typing rules instead of grammar

32



Type-guided enumeration
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only 2 programs fully constructed!

all other programs rejected early



This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

34



Bidirectional type system

• Makes top-down propagation of types explicit

• Helps with equivalence reduction



What’s wrong with this search?

36

Enumerated 3 programs:

1. 𝑛𝑖𝑙

2. 𝜆𝑥. 𝑥 𝑛𝑖𝑙

3. 𝜆𝑥. 𝑛𝑖𝑙 𝑛𝑖𝑙

They are all equivalent!



Redundant programs

37

Generating programs on the left 
is a waste of time!

Idea: only generate programs in 
normal form

Restrict type system 
to make redundant programs ill-

typed



Normal-form programs
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elimination forms

introduction forms

base types

types



Bidirectional typing judgments
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“under context Gamma, e generates type T”

“under context Gamma, i checks against type T”

[Pierce, Turner. Local Type Inference. 2000]



Bidirectional typing rules
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Type-guided enumeration
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specification code

Simple types are not enough

43

stutter :: List → List

“duplicate every
element in a list”

𝜆𝑥𝑠. 𝑥𝑠



specification code

Simple types are not enough

44

insert :: 
  Int → List → List

“insert element
into sorted list”

𝜆𝑥. 𝜆𝑥𝑠. 𝑥𝑠

power to the 
types!



Type-driven synthesis in 3 easy steps

1. Annotate types with extra specs
examples, logical predicates, resources, …

2. Design a type system for annotated types
propagate as much info as possible from conclusion to premises

3. Perform type-directed enumeration as before

45



This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

46



specification code

Type + examples

47

“duplicate every
element in a list” fix 𝑓(𝑥𝑠). match 𝑥𝑠 with

 𝑛𝑖𝑙 → 𝑛𝑖𝑙
 | 𝑦: 𝑦𝑠 → 𝑦: 𝑦: 𝑓(𝑦𝑠)

[Osera, Zdancewic , Type-and-Example-Directed Program Synthesis. 2015]

Myth



Types + examples: syntax

49

values

vectors of examples

type refined with examples

context



Example: singleton

50

no search! simply propagate the spec top-down



Type-driven synthesis in 3 easy steps

1. Annotate types with extra specs

2. Design a type system for annotated types

3. Perform type-directed enumeration as before

64

examples
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Polymorphic types
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Polymorphic types for synthesis

67

1. 𝜆𝑥. 𝑛𝑖𝑙

2. 𝜆𝑥. 0 , 𝜆𝑥. 1 , …

3. 𝜆𝑥. 𝑥

4. 𝜆𝑥. [double 0], 𝜆𝑥. dec 0

5. 𝜆𝑥. 0,0 , 𝜆𝑥. 0,1 , …

6. 𝜆𝑥. 𝑥, 𝑥

which of these programs
match the polymorphic type? 



Polymorphic types for synthesis
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1. 𝜆𝑥. 𝑛𝑖𝑙

2. 𝜆𝑥. 0 , 𝜆𝑥. 1 , …

3. 𝜆𝑥. 𝑥

4. 𝜆𝑥. [double 0], 𝜆𝑥. dec 0

5. 𝜆𝑥. 0,0 , 𝜆𝑥. 0,1 , …

6. 𝜆𝑥. 𝑥, 𝑥

1. 𝜆𝑥. 𝑛𝑖𝑙

2. 𝜆𝑥. 𝑥

3. 𝜆𝑥. 𝑥, 𝑥



Polymorphic types
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base types

types

type schemas (polytypes)

contexts



Judgments
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“under context Gamma, i checks against a schema S”

“under context Gamma, e generates type T”

type checking:

type inference:



Typing rules

71

how do we guess T’?
Hindley-Milner type inference!



This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

72



Refinement types

n :: { ν: Int | ν ≥ 0 }

max :: x: Int → y: Int → { ν: Int | x ≤ ν ∧ y ≤ ν }

xs :: { ν: List Nat | len ν = 2 }

base types

dependent 
function types

polymorphic
datatypes

}

Nat

[Rondon, Kawaguchi, Jhala. PLDI’2008]



Refinement types: measures

data List α where
    Nil  ::  List α   
    Cons  ::  x: α  → xs: List α 
                       → List α

measure len :: List α → Int
    len Nil = 0
    len (Cons _ xs) = len xs + 1

{ List α | len ν = 0 }

{ List α | len ν = len xs + 1 }

syntactic sugar:

example: duplicate every element in a list 

stutter :: ??



Refinement types: sorted lists
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data SList α where
    Nil  ::  SList α   
    Cons  ::  x: α  → xs: SList α 
                    → SList α

{α | x ≤ v }

example: insert an element into a sorted list

insert :: ??



Refinement types

76

base types

types

type schemas (polytypes)

contexts



Example: increment

77

Nat = 𝜈: Int 𝜈 ≥ 0} 
Γ = [inc: 𝑦: Int → 𝜈: Int ν = 𝑦 + 1}]

Γ ⊢ λ𝑥. inc 𝑥 ⇐ Nat → Nat



Subtyping

intuitively: 𝑇′ is a subtype of 𝑇 if all values of type 𝑇′ also belong to 𝑇
written 𝑇′ <: 𝑇

e.g. Nat <: Int or   𝜈: Int 𝜈 = 5} <: Nat

Γ ∧ 𝜙′ ⇒ 𝜙

Γ ⊢  {ν:  𝐵 | 𝜙′} <: {ν:  𝐵 | 𝜙}
sub-base

Γ ⊢ 𝑇1 <: 𝑇1
′ Γ; 𝑥: 𝑇1 ⊢ 𝑇2

′ <: 𝑇2

Γ ⊢  𝑥: 𝑇′1 → 𝑇2
′ <:  𝑥: 𝑇1 → 𝑇2

sub-fun

Int → Int <: Int → Nat

Int → Int <: Nat → Int

x:Int → Int ∣ 𝜈 = 𝑥 + 1 <: Nat → Nat

Pos <: Nat



Typing rules
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Example: increment

subtyping constraints

Γ = [inc: 𝑦: Int → 𝜈: Int ν = 𝑦 + 1}]

Nat <: Int

𝑥: Nat ⊢ 𝜈: Int ν = 𝑥 + 1} <: Nat

implications

𝜈 ≥ 0 ⇒ 𝑡𝑟𝑢𝑒

𝑥 ≥ 0 ∧ ν = 𝑥 + 1 ⇒ 𝜈 ≥ 0



Refinement type checking

idea: separate type checking into 
subtyping constraint generation and subtyping constraint solving

1. Generate a constraint for every subtyping premise in derivation

2. Reduce subtyping constraints to implications

3. Use SMT solver to check implications 

[Rondon, Kawaguchi, Jhala. PLDI’2008]
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Synthesis from refinement types

83

match xs with
 Nil → Nil
 Cons h t → 
  Cons h (Cons h (stutter t))

stutter ::
  xs:List a →
  {v:List a | len v =
    2 * len xs}

specification code

[Polikarpova, Kuraj, Solar-Lezama, Program Synthesis from Polymorphic Refinement Types. 2016]

“duplicate every
element in a list”



Synthesis from refinement types

84

match xs with
 Nil → Cons x Nil
 Cons h t → 
   if x ≤ h
     then Cons x xs
     else Cons h (insert x t)

insert :: x:a →  
  xs:SList a →
  {v:SList a | elems v =
    elems xs ∪ {x}}

specification code

“insert element
into sorted list”



Type-driven synthesis in 3 easy steps

1. Annotate types with extra specs

2. Design a type system for annotated types

3. Perform type-directed enumeration as before

85

logical predicates



x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert =
       

Type-directed enumeration for insert

86

??



x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
       

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration

87

??

context: 
x: a
xs: SList a



x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??
       

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration
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??

context: 
x: a
xs: SList a



x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??
       

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration
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??

context: 
x: a
xs: SList a
elems xs = {}



x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??
       

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??

insert x xs =
  match xs with
    Nil → Nil
    Cons h t → ??

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration
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Constraints: 
∀x: {} = {} ∪ {x}

context: 
x: a
xs: SList a
elems xs = {}



SList aSList {v:a | h ≤ v}{v:a | h ≤ v}
x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
  match xs with
    Nil → Cons x Nil
    Cons h t → 
      Cons h (insert x ??) 

The hard part: application

91

should this program be rejected?

yes! 
cannot guarantee output is sorted!



Round-trip type-checking (RTTC)
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“under context Gamma, i checks against schema S”

“under context Gamma, e checks against type T and 
generates a stronger type T’”

type checking:

type strengthening:



RTTC rules

93



x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
  match xs with
    Nil → Cons x Nil
    Cons h t → 
      Cons h (insert x ??) 

{v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
  match xs with
    Nil → Cons x Nil
    Cons h t → 
      Cons h (insert x ??)

The hard part: application

94

elems will depend on the missing part…
but sortedness we can already check!



x:a  →  xs:SList a  →
  {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
  match xs with
    Nil → Cons x Nil
    Cons h t → 
      Cons h (insert x ??) 

SList aSList {v:a | h ≤ v}{v:a | h ≤ v}

insert x xs =
  match xs with
    Nil → Cons x Nil
    Cons h t → 
      Cons h (insert x ??)

insert x xs =
  match xs with
    Nil → Cons x Nil
    Cons h t → 
      Cons h (insert x ??)

insert x xs =
  match xs with
    Nil → Cons x Nil
    Cons h t → 
      Cons h (insert x ??)

The hard part: application

95

Cons :: h:τ →  
  t: SList {τ | h ≤ v} →
  SList τ

insert :: x:τ →  
  xs:SList τ →
  SList τ

Constraints: 
∀x, h: h ≤ x

context: 
x: a
xs: SList a
h: a
t: SList {a|h≤v}
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