
CS5733 Program Synthesis
#14. Type Driven Synthesis

Ashish Mishra, September 24, 2024

Module II

Behavioral constraints

Program space
Search strategy

constraint-based
deductive

assertions
types
pre/post-conditions

imperative programs w/ loops
recursive functional programs
recursive pointer-manipulating programs

+ bounded guarantees

+ unbounded guarantees

Last week

Behavioral constraints

Program space
Search strategy

constraint-based
deductive

assertions
types
pre/post-conditions

imperative programs w/ loops
recursive functional programs
recursive pointer-manipulating programs

+ bounded guarantees

+ unbounded guarantees

This week

Behavioral constraints

Program space
Search strategy

constraint-based
deductive

assertions
types
pre/post-conditions

imperative programs w/ loops
recursive functional programs
recursive pointer-manipulating programs

+ bounded guarantees

+ unbounded guarantees

Type-driven program synthesis

5

programsearchspecification

programmer-friendly
informative

Type-driven program synthesis

6

programsearchspecification

programmer-friendly
informative

help prune
the search space

Which program do I have in mind?

7

Char -> String -> [String]

a -> Int -> [a]

split string at custom separator

list with n copies of input value

Type-driven program synthesis

8

program

context

type

type system

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

9

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

10

What is a type system?

Deductive system for proving facts about programs and types

Defined using inference rules over judgments

typing judgement

“under context Gamma, term e has type T”

A simple type system: syntax

12

example program: increment by two 𝜆𝑥. 𝑥 + 1 + 1

A simple type system: syntax

13

Inference rules = typing rules

14

Typing derivations

A derivation of Γ ⊢ 𝑒 ∷ 𝑇 is a tree where
1. the root is Γ ⊢ 𝑒 ∷ 𝑇

2. children are related to parents via inference rules

3. all leaves are axioms

15

Typing derivations

let’s build a derivation of

we say that 𝜆𝑥. 𝑥 + 1 is well-typed in the empty context
and has type Int → Int

16

⋅ ⊢ 𝜆𝑥. 𝑥 + 1 ∷ Int → Int

Typing derivations

17

⋅ ⊢ 𝜆𝑥. 𝑥 + 1 ∷ Int → Int

Typing derivations

is (𝜆𝑥. 𝑥) + 1 well-typed (in the empty context)?

no! no way to build a derivation of ⋅ ⊢ (𝜆𝑥. 𝑥) + 1 ∷ _

we say that (𝜆𝑥. 𝑥) + 1 is ill-typed

18

Let’s add lists!

19

Example program: head with default

20

𝜆𝑥. match 𝑥 with 𝑛𝑖𝑙 → 0 | 𝑦: 𝑦𝑠 → 𝑦

Typing rules

21

what should the t-match tule be?

Typing rules

22

Example: head with default

23

⋅ ⊢ 𝜆𝑥. match 𝑥 with 𝑛𝑖𝑙 → 0 | 𝑦: 𝑦𝑠 → 𝑦 ∷ List → Int

Type system → synthesis

26

program

context

type

type system

This week

intro to type systems

enumerating well-typed terms

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

27

Enumerating well-typed terms

how should I enumerate all terms of type List → List?
(up to depth 2, in the empty context)

naïve idea: syntax-guided enumeration
1. enumerate all terms generated by the grammar

2. type-check each term and throw away ill-typed ones

28

Syntax-guided enumeration

29

31 complete programs enumerated

only 2 have the type List → List!

can we do better?

Enumerating well-typed terms

how should I enumerate all terms of type List → List?
(up to depth 2, in the empty context)

better idea: type-guided enumeration
enumerate all derivations generated by the type systems

extract terms from derivations (well-typed by construction)

30

Synthesis as proof search

input: synthesis goal Γ ⊢ ? ∷ 𝑇

output: derivation of Γ ⊢ 𝑒 ∷ 𝑇 for some 𝑒

search strategy: top-down enumeration of derivation trees
like syntax-guided top-down enumeration but

derivation trees instead of ASTs

typing rules instead of grammar

32

Type-guided enumeration

33

only 2 programs fully constructed!

all other programs rejected early

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

34

Bidirectional type system

• Makes top-down propagation of types explicit

• Helps with equivalence reduction

What’s wrong with this search?

36

Enumerated 3 programs:

1. 𝑛𝑖𝑙

2. 𝜆𝑥. 𝑥 𝑛𝑖𝑙

3. 𝜆𝑥. 𝑛𝑖𝑙 𝑛𝑖𝑙

They are all equivalent!

Redundant programs

37

Generating programs on the left
is a waste of time!

Idea: only generate programs in
normal form

Restrict type system
to make redundant programs ill-

typed

Normal-form programs

38

elimination forms

introduction forms

base types

types

Bidirectional typing judgments

39

“under context Gamma, e generates type T”

“under context Gamma, i checks against type T”

[Pierce, Turner. Local Type Inference. 2000]

Bidirectional typing rules

40

Type-guided enumeration

41

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

42

specification code

Simple types are not enough

43

stutter :: List → List

“duplicate every
element in a list”

𝜆𝑥𝑠. 𝑥𝑠

specification code

Simple types are not enough

44

insert ::
 Int → List → List

“insert element
into sorted list”

𝜆𝑥. 𝜆𝑥𝑠. 𝑥𝑠

power to the
types!

Type-driven synthesis in 3 easy steps

1. Annotate types with extra specs
examples, logical predicates, resources, …

2. Design a type system for annotated types
propagate as much info as possible from conclusion to premises

3. Perform type-directed enumeration as before

45

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

46

specification code

Type + examples

47

“duplicate every
element in a list” fix 𝑓(𝑥𝑠). match 𝑥𝑠 with

 𝑛𝑖𝑙 → 𝑛𝑖𝑙
 | 𝑦: 𝑦𝑠 → 𝑦: 𝑦: 𝑓(𝑦𝑠)

[Osera, Zdancewic , Type-and-Example-Directed Program Synthesis. 2015]

Myth

Types + examples: syntax

49

values

vectors of examples

type refined with examples

context

Example: singleton

50

no search! simply propagate the spec top-down

Type-driven synthesis in 3 easy steps

1. Annotate types with extra specs

2. Design a type system for annotated types

3. Perform type-directed enumeration as before

64

examples

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

65

Polymorphic types

66

Polymorphic types for synthesis

67

1. 𝜆𝑥. 𝑛𝑖𝑙

2. 𝜆𝑥. 0 , 𝜆𝑥. 1 , …

3. 𝜆𝑥. 𝑥

4. 𝜆𝑥. [double 0], 𝜆𝑥. dec 0

5. 𝜆𝑥. 0,0 , 𝜆𝑥. 0,1 , …

6. 𝜆𝑥. 𝑥, 𝑥

which of these programs
match the polymorphic type?

Polymorphic types for synthesis

68

1. 𝜆𝑥. 𝑛𝑖𝑙

2. 𝜆𝑥. 0 , 𝜆𝑥. 1 , …

3. 𝜆𝑥. 𝑥

4. 𝜆𝑥. [double 0], 𝜆𝑥. dec 0

5. 𝜆𝑥. 0,0 , 𝜆𝑥. 0,1 , …

6. 𝜆𝑥. 𝑥, 𝑥

1. 𝜆𝑥. 𝑛𝑖𝑙

2. 𝜆𝑥. 𝑥

3. 𝜆𝑥. 𝑥, 𝑥

Polymorphic types

69

base types

types

type schemas (polytypes)

contexts

Judgments

70

“under context Gamma, i checks against a schema S”

“under context Gamma, e generates type T”

type checking:

type inference:

Typing rules

71

how do we guess T’?
Hindley-Milner type inference!

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

72

Refinement types

n :: { ν: Int | ν ≥ 0 }

max :: x: Int → y: Int → { ν: Int | x ≤ ν ∧ y ≤ ν }

xs :: { ν: List Nat | len ν = 2 }

base types

dependent
function types

polymorphic
datatypes

}

Nat

[Rondon, Kawaguchi, Jhala. PLDI’2008]

Refinement types: measures

data List α where
 Nil :: List α
 Cons :: x: α → xs: List α
 → List α

measure len :: List α → Int
 len Nil = 0
 len (Cons _ xs) = len xs + 1

{ List α | len ν = 0 }

{ List α | len ν = len xs + 1 }

syntactic sugar:

example: duplicate every element in a list

stutter :: ??

Refinement types: sorted lists

75

data SList α where
 Nil :: SList α
 Cons :: x: α → xs: SList α
 → SList α

{α | x ≤ v }

example: insert an element into a sorted list

insert :: ??

Refinement types

76

base types

types

type schemas (polytypes)

contexts

Example: increment

77

Nat = 𝜈: Int 𝜈 ≥ 0}
Γ = [inc: 𝑦: Int → 𝜈: Int ν = 𝑦 + 1}]

Γ ⊢ λ𝑥. inc 𝑥 ⇐ Nat → Nat

Subtyping

intuitively: 𝑇′ is a subtype of 𝑇 if all values of type 𝑇′ also belong to 𝑇
written 𝑇′ <: 𝑇

e.g. Nat <: Int or 𝜈: Int 𝜈 = 5} <: Nat

Γ ∧ 𝜙′ ⇒ 𝜙

Γ ⊢ {ν: 𝐵 | 𝜙′} <: {ν: 𝐵 | 𝜙}
sub-base

Γ ⊢ 𝑇1 <: 𝑇1
′ Γ; 𝑥: 𝑇1 ⊢ 𝑇2

′ <: 𝑇2

Γ ⊢ 𝑥: 𝑇′1 → 𝑇2
′ <: 𝑥: 𝑇1 → 𝑇2

sub-fun

Int → Int <: Int → Nat

Int → Int <: Nat → Int

x:Int → Int ∣ 𝜈 = 𝑥 + 1 <: Nat → Nat

Pos <: Nat

Typing rules

79

Example: increment

subtyping constraints

Γ = [inc: 𝑦: Int → 𝜈: Int ν = 𝑦 + 1}]

Nat <: Int

𝑥: Nat ⊢ 𝜈: Int ν = 𝑥 + 1} <: Nat

implications

𝜈 ≥ 0 ⇒ 𝑡𝑟𝑢𝑒

𝑥 ≥ 0 ∧ ν = 𝑥 + 1 ⇒ 𝜈 ≥ 0

Refinement type checking

idea: separate type checking into
subtyping constraint generation and subtyping constraint solving

1. Generate a constraint for every subtyping premise in derivation

2. Reduce subtyping constraints to implications

3. Use SMT solver to check implications

[Rondon, Kawaguchi, Jhala. PLDI’2008]

This week

intro to type systems

enumerating well-typed terms

bidirectional type systems

synthesis with types and examples

polymorphic types

refinement types

synthesis with refinement types

82

Synthesis from refinement types

83

match xs with
 Nil → Nil
 Cons h t →
 Cons h (Cons h (stutter t))

stutter ::
 xs:List a →
 {v:List a | len v =
 2 * len xs}

specification code

[Polikarpova, Kuraj, Solar-Lezama, Program Synthesis from Polymorphic Refinement Types. 2016]

“duplicate every
element in a list”

Synthesis from refinement types

84

match xs with
 Nil → Cons x Nil
 Cons h t →
 if x ≤ h
 then Cons x xs
 else Cons h (insert x t)

insert :: x:a →
 xs:SList a →
 {v:SList a | elems v =
 elems xs ∪ {x}}

specification code

“insert element
into sorted list”

Type-driven synthesis in 3 easy steps

1. Annotate types with extra specs

2. Design a type system for annotated types

3. Perform type-directed enumeration as before

85

logical predicates

x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert =

Type-directed enumeration for insert

86

??

x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration

87

??

context:
x: a
xs: SList a

x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration

88

??

context:
x: a
xs: SList a

x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration

89

??

context:
x: a
xs: SList a
elems xs = {}

x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

insert x xs =
 match xs with
 Nil → Nil
 Cons h t → ??

{v:SList a | elems v = elems xs ∪ {x}}

Type-directed enumeration

90

Constraints:
∀x: {} = {} ∪ {x}

context:
x: a
xs: SList a
elems xs = {}

SList aSList {v:a | h ≤ v}{v:a | h ≤ v}
x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
 match xs with
 Nil → Cons x Nil
 Cons h t →
 Cons h (insert x ??)

The hard part: application

91

should this program be rejected?

yes!
cannot guarantee output is sorted!

Round-trip type-checking (RTTC)

92

“under context Gamma, i checks against schema S”

“under context Gamma, e checks against type T and
generates a stronger type T’”

type checking:

type strengthening:

RTTC rules

93

x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
 match xs with
 Nil → Cons x Nil
 Cons h t →
 Cons h (insert x ??)

{v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
 match xs with
 Nil → Cons x Nil
 Cons h t →
 Cons h (insert x ??)

The hard part: application

94

elems will depend on the missing part…
but sortedness we can already check!

x:a → xs:SList a →
 {v:SList a | elems v = elems xs ∪ {x}}

insert x xs =
 match xs with
 Nil → Cons x Nil
 Cons h t →
 Cons h (insert x ??)

SList aSList {v:a | h ≤ v}{v:a | h ≤ v}

insert x xs =
 match xs with
 Nil → Cons x Nil
 Cons h t →
 Cons h (insert x ??)

insert x xs =
 match xs with
 Nil → Cons x Nil
 Cons h t →
 Cons h (insert x ??)

insert x xs =
 match xs with
 Nil → Cons x Nil
 Cons h t →
 Cons h (insert x ??)

The hard part: application

95

Cons :: h:τ →
 t: SList {τ | h ≤ v} →
 SList τ

insert :: x:τ →
 xs:SList τ →
 SList τ

Constraints:
∀x, h: h ≤ x

context:
x: a
xs: SList a
h: a
t: SList {a|h≤v}

	Slide 2: Module II
	Slide 3: Last week
	Slide 4: This week
	Slide 5: Type-driven program synthesis
	Slide 6: Type-driven program synthesis
	Slide 7: Which program do I have in mind?
	Slide 8: Type-driven program synthesis
	Slide 9: This week
	Slide 10: This week
	Slide 11: What is a type system?
	Slide 12: A simple type system: syntax
	Slide 13: A simple type system: syntax
	Slide 14: Inference rules = typing rules
	Slide 15: Typing derivations
	Slide 16: Typing derivations
	Slide 17: Typing derivations
	Slide 18: Typing derivations
	Slide 19: Let’s add lists!
	Slide 20: Example program: head with default
	Slide 21: Typing rules
	Slide 22: Typing rules
	Slide 23: Example: head with default
	Slide 26: Type system → synthesis
	Slide 27: This week
	Slide 28: Enumerating well-typed terms
	Slide 29: Syntax-guided enumeration
	Slide 30: Enumerating well-typed terms
	Slide 32: Synthesis as proof search
	Slide 33: Type-guided enumeration
	Slide 34: This week
	Slide 35: Bidirectional type system
	Slide 36: What’s wrong with this search?
	Slide 37: Redundant programs
	Slide 38: Normal-form programs
	Slide 39: Bidirectional typing judgments
	Slide 40: Bidirectional typing rules
	Slide 41: Type-guided enumeration
	Slide 42: This week
	Slide 43: Simple types are not enough
	Slide 44: Simple types are not enough
	Slide 45: Type-driven synthesis in 3 easy steps
	Slide 46: This week
	Slide 47: Type + examples
	Slide 49: Types + examples: syntax
	Slide 50: Example: singleton
	Slide 64: Type-driven synthesis in 3 easy steps
	Slide 65: This week
	Slide 66: Polymorphic types
	Slide 67: Polymorphic types for synthesis
	Slide 68: Polymorphic types for synthesis
	Slide 69: Polymorphic types
	Slide 70: Judgments
	Slide 71: Typing rules
	Slide 72: This week
	Slide 73: Refinement types
	Slide 74: Refinement types: measures
	Slide 75: Refinement types: sorted lists
	Slide 76: Refinement types
	Slide 77: Example: increment
	Slide 78: Subtyping
	Slide 79: Typing rules
	Slide 80: Example: increment
	Slide 81: Refinement type checking
	Slide 82: This week
	Slide 83: Synthesis from refinement types
	Slide 84: Synthesis from refinement types
	Slide 85: Type-driven synthesis in 3 easy steps
	Slide 86: Type-directed enumeration for insert
	Slide 87: Type-directed enumeration
	Slide 88: Type-directed enumeration
	Slide 89: Type-directed enumeration
	Slide 90: Type-directed enumeration
	Slide 91: The hard part: application
	Slide 92: Round-trip type-checking (RTTC)
	Slide 93: RTTC rules
	Slide 94: The hard part: application
	Slide 95: The hard part: application

