CS57335 Program Synthesis

#14. Type Driven Synthesis

Ashish Mishra, September 24, 2024

Module |l

Behavioral constraints
assertions + bounded guarantees

types + unbounded guarantees
pre/post-conditions

P
Search strategy rogram space

constraint-based
deductive

imperative programs w/ loops
recursive functional programs
recursive pointer-manipulating programs

Last week

Behavioral constraints
assertions ——JP + bounded guarantees

types + unbounded guarantees
pre/post-conditions

Program space

Search strategy
— constraint-based —P imperative programs w/ loops
deductive recursive functional programs

recursive pointer-manipulating programs

This week

Behavioral constraints
assertions + bounded guarantees

types —— + unbounded guarantees
pre/post-conditions

P
Search strategy rogram space

constraint-based

— Jeductive

imperative programs w/ loops
—P recursive functional programs
recursive pointer-manipulating programs

Type-driven program synthesis

specification program

P e \

programmer-friendly
informative

Type-driven program synthesis

specification search

o — -

programmer-friendly
informative

help prune
the search space

program

N

Which program do | have in mind?

Char -> String -> [String] split string at custom separator

a -> Int -> [a] list with n copies of input value

Type-driven program synthesis

type system

e]

type l program

!
:

context

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

10

What is a type system?

Deductive system for proving facts about programs and types

Defined using inference rules over judgments

typing judgement PTZQJF&‘LYV) /-I—Zrm

J
context = [F e =] < Type

“under context Gamma, term e has type T”

A simple type system: syntax

A O I e + | ’)(I e @] d\x.e --expfefsionj

example program: increment by two Ax (x -|— 1) -|— 1

A simple type system: syntax

@ u= Qle+llxlee| Ax.e -exrssions

T a= Int ' T->1 = types

[ou= l x:1 . — Contexts

)

Inference rules = typing rules

: X:}é\
TF xa

T e:xInt
[+ 0 Int [+ e+ Int
F,x:T, - Q::Tz_ _rl— e,

rl- u\X.Q, :3T|“7Tz_

Typing derivations

A derivation of I' = e :: T is a tree where
1. therootisI' e : T
2. children are related to parents via inference rules
3. all leaves are axioms

15

Typing derivations

let’s build a derivation of

- Ax.x+ 1 ::Int —» Int

we say that Ax.x + 1 is well-typed in the empty context
and has type Int — Int

16

Typing derivations

Me:xInt
[+ 02 Int N e+ Int

- Ax.x + 1 ::

. x:Tel” x:T+exT,

Tk xaT [Fdx.e=T-T,

TresT =T [texT
[t e e=T

Int = Int

17

Typing derivations

is (Ax.x) + 1 well-typed (in the empty context)?

no! no way to build a derivation of - - (Ax.x) + 1 :: _
we say that (Ax.x) + 1 isill-typed

18

Let’s add lists!

e = . |01] e:e) mdch e wth [1—=e| X:Xx = €

T w= Tet| List |T=T

Example program: head with default

Ax.match x withnil > 0| y:ys -y

Typing rules

| r [T Listﬁ

what should the t-match tule be?

1

r{' el ::Int l—-l‘ ez,::Ll‘Sf

| F e e, it

i

[+ e E: e

P—

4
(- e,

|

)

r F watch e, with (1-e, | X:Xs—>@g, : T

21

Typing rules

r{' el ::Int l—-{‘ ez,::Ll‘Sf

v C1=lict b e:e,xList

[+ e.ulist Fexl [, x:Int, xs:list e,z

[' F wmatch @, with (1-e, | X:Xs=>e, : T

Example: head with default

- = Ax.match x withnil - 0| y: ys - y :: List = Int

Type system — synthesis

type system

[Fe |

type l program

!
:

context

This week

Intro to type systems

enumerating well-typed terms
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

27

Enumerating well-typed terms

how should | enumerate all terms of type List — List?
(up to depth 2, in the empty context)

naive idea: syntax-guided enumeration
1. enumerate all terms generated by the grammar
2. type-check each term and throw away ill-typed ones

28

Syntax-guided enumeration

e u= Ole+nlxleel Ax.e
It1] e
\\Imche Wh [1se]| X:x=»e
0 e+ | AXx.e (1 e¢,e, medeh eow;‘H')

31 complete programs enumerated
only 2 have the type List — List!
can we do better?

29

Enumerating well-typed terms

how should | enumerate all terms of type List — List?
(up to depth 2, in the empty context)

better idea: type-guided enumeration
enumerate all derivations generated by the type systems
extract terms from derivations (well-typed by construction)

30

Synthesis as proof search

input: synthesis goal I' =7:: T
output: derivation of I' e :: T for some e

search strategy: top-down enumeration of derivation trees
like syntax-guided top-down enumeration but
derivation trees instead of ASTs
typing rules instead of grammar

32

Type-guided enumeration -z Cpesie

v 02]nt
MxTr esT, [heaT>T [kex:T
MFdxe=T-T, It e e=T
only 2 programs fully constructed! MoesTe b ewlist
all other programs rejected early NS LI e eezlit

Mt eslst TrexT [xnt,xs:list 2T
[- watch e, vih (1ve, | s we, 22 T

o U Lt - List

Ax.7? e
Xs:list £ 2 1 st "7 53;5 .
fo 1
‘bl Sl RIS

l t1 N

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

34

Bidirectional type system

Makes top-down propagation of types explicit
Helps with equivalence reduction

What's wrong with this search?

- 2 . st

S\

++ 75 List> List e b7 wlist

Ax, ? 1 1
X:List = 23 List

C]/\X

Enumerated 3 programs:
nil
(Ax.x) nil
(Ax.nil) nil

They are all equivalent!

36

Redundant programs

Generating programs on the left

(Ax.e) e, — e, [x:=e,] Is @ waste of time!
. \dea: only generate programs in
it
m{??’_,[é with e normal form
) — 7 !
yys > e,

Restrict type system

metch ¢, :e, with ake redundant programs ill-
(1> e; > @ ly:=¢,ys: ’@ﬁ typed

gy = ey

37

Normal-form programs

g = X ' € ¢ elimination forms
C

= O |+l | Ax.L]ca]eic
| Mmatch e with (1-L | vix = C

B = Ihtl ngt base types
T "= B l T —?T types

introduction forms

38

Bidirectional typing judgments

r }_,. L <:__- l “under context Gamma, i checks against type T”

r [J— e :;’> ‘ “under context Gamma, e generates type T”

[Pierce, Turner. Local Type Inference. 2000]

39

Bidirectional typing rules

x:T el Tre2>T>T [riel

(v x> T [rel=> T
l_{—- e =B [t oe it [roelist
- e& B [+ 1€ List [+ e, List

xTrieT, lreslst TFLEB [yIbplit =B

[k dxie T, [k matdh e with 1390, lyigs 57, < B

40

Type-guided enumeration

- b T E [t =gt

‘ dx. 7
X:list F?7<& List

N

Canhot o
X:LiS+|—?=>__-’Lis‘t Tt &~ L-abs hq’zB

x: Lt 7>t 153 }

A

41

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

42

Simple types are not enough

specification

“duplicate every
element in a list”

stutter :: List -» List —p #ﬁ S

code

AXS. xS

43

Simple types are not enough

specification code

“insert element

— #ﬁ —» Ax.Axs.xs

44

Type-driven synthesis in 3 easy steps

1. Annotate types with extra specs
examples, logical predicates, resources, ...

2. Design a type system for annotated types
propagate as much info as possible from conclusion to premises

3. Perform type-directed enumeration as before

45

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

46

Type + examples

specification code

“duplicate every My h

element in a list” fix f (xs). match xs with

t
g X — il > il
st = st
List > L 9 | y1ys > y:y: f(ys)
P (L1201 (010091 [\,01>01,1,9,0])

[Osera, Zdancewic , Type-and-Example-Directed Program Synthesis. 2015]

47

Types + examples: syntax

o~ partial funcion

Q’\

V uzQ|v+l]t1]viv |v=>V

values
Vi
X -~ vectors of examples
Vi
R oo — T D> x type refined with examples
r = I X . R r' context

)

49

Example: singleton

* + Int —>Lisf p<{ 0-»[07| l-a(u]) ’n‘—’>J\>(. X (1]

|

It F st =y X :[1]

XIntePr Tt X TPl List) []

no search! simply propagate the spec top-down

50

Type-driven synthesis in 3 easy steps

1. Annotate types with

2. Design a type system for annotated types
3. Perform type-directed enumeration as before

64

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

65

Polymorphic types

YA, A = List &

Polymorphic types for synthesis

- F 7uTInt - List Int

Ax. nil

Ax.
Ax. |
Ax.
Ax.

Ax. [x, x]

0], Ax. 1], ...

x]

‘double 0], Ax. [dec O]
0,0], Ax.[0,1], ...

« F O MA. A = List A

which of these programs
match the polymorphic type?

67

Polymorphic types for synthesis

« + 7uInt - Lit Int - F {n V. A - List &

Ax.nil

Ax. 0], Ax. [1], ...
Ax. |x]
Ax.|double 0], Ax.
Ax.10,0], 1x.]0,1], ...
Ax. [x, x] 3. Ax.|x, x]

Polymorphic types

B u= Tt | List Bl o
T = B (T"T types
S .= T I Vd ; 6 type schemas (polytypes)

r—:;: : IX::S)I— ld\)r contexts

Judgments

[-1eS

e >7

type checking:

“under context Gamma, i checks against a schema S”

type inference:

“under context Gamma, e generates type T”

70

Typing rules

(Fo=h [Fil,e[stB

[+r1e List B [+ (0, &< List B
CadrieS X:¥d. 1 el
[& ¥d4.5 | Fx = [a»TIT

how do we guess T'?
Hindley-Milner type inference!

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

72

Refinement types

Nat base types

dependent

max :: x: Int » y: Int » { vi Int | x < v Ay <V} function types

xs :: { v: List Nat } polymorphic
datatypes

[Rondon, Kawaguchi, Jhala. PLDI’2008]

Refinement types: measures

data List a where
Nil :: { List a | len v =0 }
Cons :: X: a = Xs: List a
> { List a | len v = Llen xs + 1 }

syntactic sugar:

measure len :: List a » Int
Len Nil = ©
Len (Cons _ xs) = len xs + 1

example: duplicate every element in a list

stutter :: ??

Refinement types: sorted lists

data SList a where
Nil :: SList a
Cons :: Xx: a - xs: SList {a | x
-» SList a

example: insert an element into a sorted list

insert :: ?°?

<

v}

75

Refinement types

B u= It | List B &
T .e o {l)'BI P} ’ X:TQT types

S gt T I Vd . 6 type schemas (polytypes)

JEEN PEbNE | &, T contexts

Example: increment

Nat = {v:Int | v = 0}
[=[inc:y:Int = {v:Int|v=1y+ 1}]

[' - Ax.inc x & Nat —» Nat

77

Subtyping

intuitively: T' is a subtype of T if all values of type T' also belongto T
written T’ <:T
e.g. Nat <: Int or {v:Int|v = 5} <:Nat

[TTAQ" = ¢ -7, <7y, TLx:Ty+T,<:T,
sub-base - sub-fun - -
' {viB|¢d'}<: {v: B|¢d} 't x:T1-»T, <t x:T; » T,
Pos <: Nat @ Int — Int <:Int — Nat Q
Int —» Int <: Nat — Int @

x:Int - {Int | v = x + 1} <:Nat — Nat(

Typing rules

[Fe =T [FT<:{BI¢S
[k eéz{glp}

rf‘Q_Z’Py'-T\'?TL r”[‘é—-Tl

[kel = [BH.L]TZ

Example: increment

['=[inc:y:Int - {viInt|v=1y+ 1}]

[Nt xoNat [, x: bt F-hat<: Int

[x:Met iy Tit>(Tntlye} T xMat X E Int
LMt ine X > {Tat D=xt1) T xcd (Tt 1)=xei} <o Nt

[x:ilat - inc X & Mot
[F O x. he x <= MNat > Vat

subtyping constraints implications
SMT
S
Nat <:Int v =0 = true Olver- VAL/D!

x:Nat - {v:Int|v = x + 1} <: Nat x=20Av=x+1=>v=>0

Refinement type checking

idea: separate type checking into

subtyping constraint generation and subtyping constraint solving
1. Generate a constraint for every subtyping premise in derivation
2. Reduce subtyping constraints to implications
3. Use SMT solver to check implications

[Rondon, Kawaguchi, Jhala. PLDI’2008]

This week

Intro to type systems

enumerating well-typed terms
bidirectional type systems
synthesis with types and examples
polymorphic types

refinement types

synthesis with refinement types

82

Synthesis from refinement types

specification code

“duplicate every

elementin a list”
match xs with

stutter :: Nil - Nil
Xs:List a - | l Cons h t »
{v:List a | len v = @ Cons h (Cons h (stutter t))

2 * len xs}

[Polikarpova, Kuraj, Solar-Lezama, Program Synthesis from Polymorphic Refinement Types. 2016]

83

Synthesis from refinement types

specification

“insert element
into sorted list”

insert :: x:a =
Xs:SList a »
{v:SList a | elems v =
elems xs U {x}}

S -

code

match xs with
Nil - Cons x Nil
Cons h t -
if x £ h
then Cons x xs
else Cons h (insert x t)

84

Type-driven synthesis in 3 easy steps

1. Annotate types with JERlellec|Nelg=lolleE1{=S

2. Design a type system for annotated types

3. Perform type-directed enumeration as before

85

Type-directed enumeration for insert

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert = ??

Type-directed enumeration

context:
{v:SList a | elems v = elems xs U {x}} X: a

Xs: SList a

insert X xs = ??

Type-directed enumeration

{v:SList a | elems v = elems xs U {x}}

|

match xs with
Nil - ??
Cons h t » ??

context:
X: a
Xs: SList a

Type-directed enumeration

context:

{v:SList a | elems v = elems xs U {x}} X: a
Xs: SList a

1 elems xs = {}

2?

Type-directed enumeration

{v:SList a | elems v

|

Nil

elems xs U {x}}

context:
X. 4

Xs: SList a

elems xs

Constraints:
vx: {} =

90

The hard part: application

X:a - Xs:SList a =~
{v:SList a | elems v = elems xs U {x}}

!

insert X xs =
match xs with

|
Nil -» Cons x Nil yes: |
Cons h t = cannot guarantee output is sorted!

should this program be rejected?

Cons h (insert x ??)

91

Round-trip type-checking (RTTC)

type checking:
r - L <—_—-_ 5 “under context Gamma, i checks against schema S”

type strengthening:

|
r L T ‘?T “under context Gamma, e checks against type T and
generates a stronger type T"”

92

RTTC rules

(+ec {BlPY>T xTel [+TaT
[Fe& {BlpS TrxeTT

[reel-Toygl>l, [Triel
| Fel& T2yl

The hard part: application

elems will depend on the missing part...
but sortedness we can already check!

{v:SList a | elems v = elems xs U {x}}

!

Cons h (insert x ??)

94

The hard part: application

context:
{v:a | h £ v} x: a
Xs: SList a
h: a
1 t: SList {a|h<v}
Constraints:
VX, h: h £

insert :: x:T -
Xs:SList Tt ~»

X X SList T

95

	Slide 2: Module II
	Slide 3: Last week
	Slide 4: This week
	Slide 5: Type-driven program synthesis
	Slide 6: Type-driven program synthesis
	Slide 7: Which program do I have in mind?
	Slide 8: Type-driven program synthesis
	Slide 9: This week
	Slide 10: This week
	Slide 11: What is a type system?
	Slide 12: A simple type system: syntax
	Slide 13: A simple type system: syntax
	Slide 14: Inference rules = typing rules
	Slide 15: Typing derivations
	Slide 16: Typing derivations
	Slide 17: Typing derivations
	Slide 18: Typing derivations
	Slide 19: Let’s add lists!
	Slide 20: Example program: head with default
	Slide 21: Typing rules
	Slide 22: Typing rules
	Slide 23: Example: head with default
	Slide 26: Type system → synthesis
	Slide 27: This week
	Slide 28: Enumerating well-typed terms
	Slide 29: Syntax-guided enumeration
	Slide 30: Enumerating well-typed terms
	Slide 32: Synthesis as proof search
	Slide 33: Type-guided enumeration
	Slide 34: This week
	Slide 35: Bidirectional type system
	Slide 36: What’s wrong with this search?
	Slide 37: Redundant programs
	Slide 38: Normal-form programs
	Slide 39: Bidirectional typing judgments
	Slide 40: Bidirectional typing rules
	Slide 41: Type-guided enumeration
	Slide 42: This week
	Slide 43: Simple types are not enough
	Slide 44: Simple types are not enough
	Slide 45: Type-driven synthesis in 3 easy steps
	Slide 46: This week
	Slide 47: Type + examples
	Slide 49: Types + examples: syntax
	Slide 50: Example: singleton
	Slide 64: Type-driven synthesis in 3 easy steps
	Slide 65: This week
	Slide 66: Polymorphic types
	Slide 67: Polymorphic types for synthesis
	Slide 68: Polymorphic types for synthesis
	Slide 69: Polymorphic types
	Slide 70: Judgments
	Slide 71: Typing rules
	Slide 72: This week
	Slide 73: Refinement types
	Slide 74: Refinement types: measures
	Slide 75: Refinement types: sorted lists
	Slide 76: Refinement types
	Slide 77: Example: increment
	Slide 78: Subtyping
	Slide 79: Typing rules
	Slide 80: Example: increment
	Slide 81: Refinement type checking
	Slide 82: This week
	Slide 83: Synthesis from refinement types
	Slide 84: Synthesis from refinement types
	Slide 85: Type-driven synthesis in 3 easy steps
	Slide 86: Type-directed enumeration for insert
	Slide 87: Type-directed enumeration
	Slide 88: Type-directed enumeration
	Slide 89: Type-directed enumeration
	Slide 90: Type-directed enumeration
	Slide 91: The hard part: application
	Slide 92: Round-trip type-checking (RTTC)
	Slide 93: RTTC rules
	Slide 94: The hard part: application
	Slide 95: The hard part: application

