CS57335 Program Synthesis

#12.Sketching and constraints based search

Ashish Mishra, September 17, 2024

MCMC Based synthesis

Approach:
* Let y be the space of programs

e Engineer a K(x, y) such that z(x) is high for “good programs”
and low for “bad programs”

* Pick a random start state x,,
e Simulate the markov process for n steps for some large n.

By the fundamental theorem, the probability of x, is a good

program will be higher than the probability that it is a bad
pProgram Key step: Engineer K

that has desired

property for

Metropolis algorithm with symmetric Proposal distribution

® Start with a markov matrix J(x, y) with J(x,y) > 0 < J(y,x) > 0 and J(x, y) = J(y, x)

® Initialization: Chose an arbitrary x to be the first observation in the sample and initialize J to
satisty the above property.

® For each iteration say t.
® Propose a candidate y for the next sample by picking from J(x_t, y).

® Calculate the acceptance ratio A = z(y)/z(x,), which is used to decide whether to accept or
reject the candidate.

® Generate a uniform random numberu € [0,1].
® If u <= Athen accepty and set x_{t+1} <-y
® If u > A then reject the candidate y and set x_{t+1} <- x

Metropolis algorithm : Non symmetric case

® Start with a markov matrix J(x, y) with J(x,y) > 0 & J(y,x) >0

® For each 1teration say t.

® Propose a candidate y for the next sample by picking from J(x_t, y).
(y) / (x,)
J(x,y) J(y,x,)

o Calculate the acceptance ratio A = , which 1s used to decide whether to

accept or reject the candidate.
® I[f A>=1then accepty and set x_{t+1} <-y
®*If0 <A< 1 then
® accept candidate y and set x_{t+1} <- y with probability A
® reject canditate y and set x_{t+1} <- x with probability (1- A)

How do we prove that K (x, y) gives a stationary distribution \pi

Detailed Balance Equation holds in the above construction:

r7(x)K(x,y) = z(y) K(», x)

a N

Probability to be at a position x
Y P Probability to be at a position y

and move to a position y = and move to a position x

For any position our Markov chain can visit, there is as much in-flow as out-flow

And thus the K(x, y) can no longer change, thus the calculate K is a unique stationary
distribution

Z?Z'(X)K(X, y) = Zn(y)K(y,x) = 71'()/> ZK(y,x) = 7(y)

Module ll: Synthesizing
Complex Programs

Module I vs1I

Behavioral constraints

exan ,
_ rich

specifications

Structural constraints
Search strategy

Enumerative
Representation-based
Stochastic
Constraint-based

straight-li
condi#onal
rograms

general programs
with loops / recursion

—»

Why go beyond examples?

Might need too many
* Example: Myth needs 12 for insert sorted, 24 for 1ist n _th
 Examples contain too little information
e Successful tools use domain-specific ranking

Output difficult to construct

 Example: AES cypher, RBT
 Examples also contain too much information (concrete outputs)

Need strong guarantees
 Example: AES cypher

Reasoning about non-functional properties
 Example: security protocols

Why is this hard?

gcd (int a, int b) returns (int c) infinitely many inputs
requires a>0Ab>0 /cannot validate by testing
ensures a%c=0Ab%c=0

Vd .c<d = a%d#0V b%d+0
{

int x , y := a, b;
while (x !'=vy) {
if (x > y) x := ?;
else y := ?;

infinitely many paths!

hard to generate constraints

)

Why is this hard?

Synthesis from examples Synthesis from specifications

o\ - k’:“ F R U 'T S C}‘,.-—.-,," ’7_.

) _ /) WORDSEARCH | J &
7 = YO &

" - e
\ | b

»w - -C>X®*mm m >
NrZ=m-—-3%-—-R~K
Imm@©@Z>» »0
mIXCr 92X mr
< m@O > r mom
“~00—->79>»0 ,

o Z r Z2—0—r—m—3

2 0Om9o>» »©® 0O —

SEE IF YOU CAN FIND THESE WORDS!

SEE IF YOU CAN FIND ANY KLINGON FRUIT!

FRUITS APPLE ORANGE MANGO
APRICOT PEAR MELON CHERRY

validation is hard!
validation was easy! (and search is still hard)

Inductive generalization vs Deductive specialization

Constraint-based synthesis with Program

Sketching

Reading: https:/link.springer.com/article/
10.1007/5s10009-012-0249-7

Constraint-based synthesis

Key ideal:

e Search as “curve fitting”
e “curve” is a parameterized family of functions

« H = { Plc]|ceC)

Neo did something

along these lines

Key idea 2:

e Define a language to describe parameterized programs

Key idea 3:

e “Solve” instead of search

Constraint-based synthesis

Behavioral constraints |
encoding

— 3(.spec((C)

Structural constraints

13

CBS for complex programs

2. How to encode the behavior of complex programs?

Behavioral constraints
= assertions / reference
implementation

v
encoding

— 3(.spec(C)
A

Structural constraints

T 3. How to solve for complex specs?

1. How to specify for complex programs?

Program Sketching

2. How to encode the behavior of complex programs?

Symbolic execution

Behavioral constraints
= assertions / reference
implementation

v
encoding

— 3(.spec(C)
*

Structural constraints

3. How to solve for complex specs?
CEGIS

1. How to specify for complex programs?
Sketches

Synthesis with constraints

Overview of the Sketch language
Turning synthesis problems into constraints

Efficient constraint solving

Language Design Strategy

®* Two main approaches for CBS
® First: Give the user a high level notation to define the program space
®* Then use a compiler to translate that into a parametirct program P[c].
®* Brahma (bag of components)
* SyGuS (CFG)

® Second: provide the user with a rich and expressive language for directly writing parametric
programs.

® significant control over the program space.
®* More complicated inputs required.
® Sketching

The Sketch Language

® simple imperative language very similar to Java

®* heap allocated structures, high-order functions and polymorphism (generics in
Java), efc.

® Additional Unique features:
® Unknown constants
® Harnesses

® Generator functions

Unknown Constants

Extend base language with one construct

Constant hole: ?2?

int

{

Xy

}

bar (int x)

int t X *
assert t ==

return t;

Synthesizer replaces ? ? with a constant

High-level constructs defined in terms of 2?2

int bar (int x)

{

int t = x *
Xy

return t;
}

2

we

Unknown constant—> Sets of Expressions

® Expressions with ?? == sets of expressions
® linear expressions X*?2?2 + y*?27?
® polynomials X*X*2? + xX*?2? + ??
® sets of variables ?2? 2 X : Y

Harnesses/ Test Harness

® a function that when invoked must not trigger any assertion violations.

int doublevalue(int in){ harness void testl(){
int t = in x ?7?; doublevalue(5);
assert t == in + in; doublevalue(7);
return t; doublevalue(3);
} s
A sketch example A test harness

® A test harness can also take inputs on their own.

Example: Registerless Swap

* Swap two words without an extra temporary

int W = 32;

volid swap (ref bit[W]
1f£(?27?) {
1f£(?27?) {
1f(27?) {

VAN

= X

XX WX

J

harness void main (bit[W]

bit[W] tx = x; bit[W]

swap(x, V)
assert x==ty && vy

X, ref bit|[W]
y; lelse{ y = X
= x ~ y;ltelse{ v = X
= x ~ y;lelse{ y = x

X, bit[W]
Lty = vy»

TX;

v) Ao

From simple to complex holes

®* We need to compose ?? to form complex holes

®* Borrow ideas from generative programming
®* Define generators to produce families of functions
®* Use partial evaluation aggressively

Generators

® Look like a function
® but are partially evaluated into their calling context

®* Key feature:
® Different invocations - Different code
® Can recursively define arbitrary families of programs

generator int legen(int i, int j){
return ??xi + ??%j + ?7; A simple generator for set of linear function of
} two parameters

Properties of Generators

Are these just glorified Macros?

® Generator function can be used anywhere in the code in the same way a function.

®* However different semantics.

® every call replaced by a concrete piece of code in the space of code fragments
defined by the generator.

® Different calls to the generator function can produce different code fragments.

harness void main(int x, int y){
assert legen(x, y) == 2%x + 3;
assert legen(x,y) == 3%xx + 2xy;

} }

void _main (int x, int y){
assert ((((2 x x) + (0 xvy)) + 3) == ((2 %x x) + 3));
assert (((3 % x) + (2 xy)) == ((3 xx) + (2 %xvy)));

Harness using the generator Concerete program after solving

Real Power: Recursion
/* %*

* Generate the set of all bit-vector expressions
* involving +, &, xor and bitwise negation (~).
* the bnd param limits the size of the generated expression.

*/

generator bit[W] gen(bit[W] x, int bnd) {
assert bnd > 0;
1£f(??) return x;
1f(??) return ?7?;
1f(??) return ~gen(x, bnd-1);
1£(27) {
return {| gen(x, bnd-1) (+ | & | 7)) gen(x, bnd-1) |};

Real Power: Closures + High Order Generators

generator void rep(int n, fun) {
1f (n>0) {
£ ()7
rep(n-1, f£);

J

bit[l16] reverseSketch(bit[lo] 1n) {

bit[l6] t = 1n;

int s = 1;

generator wvoid tmp () {
bit[lo] m = ?27?7;
t = ((t << g)&m)| ((t >> s)&(~m));
S = s*?7;

}

rep(?2?, tmp);

return t;

Real Power: Higher Order terms + Closures

hi+ 271 ravarcaQliatrh(hi+ 1201 111) {
gene rator void rep void reverseSketch (bit[32] in, ref bit[32] _out) implements reverse/xreverse.sk:7x%/
{

if(n>0)<{ bit[32] sa0 = {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1}:
f] _out = ((in << 1) & _sa@) | ((in >> 1) & (~(__sa0)));
(); bit[32] sa0 o = {0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1}:

_ '\ _out = ((_out << 2) & _sa0_0) | ((_out >> 2) & (~(__sa0_0)));

rep(n-1, f, -
bit[32] sa0 1 = {0,0,0,0,1,1,1,1,90,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1};

} _out = ((_out << 4) & _sa0_1) | ((_out >> 4) & (~(_sa0_1))); ((t >> S) & (~m))

bit[32] sa0® 2 = {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1};

} _out = ((_out << 8) & __sa0_2) | ((_out >> 8) & (~(__sa0_2)));
bit[32] sa® 3 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,21,1,1,1,1,1,1,1,1,1,1,1,1};
_out = ((_out << 16) & __sa@_3) | ((_out >> 16) & (~(__sa0@_3)));
return;

Takes a function/*

It n times.

Interesting comp. pattern: a particular kind of

of operation to be repeated with each iteration a distinct operation

Syntactic Sugar

*{ RegExp [}

® RegEXxp supports choice ‘| and optional *?”

® can be used arbitrarily within an expression

®* to select operands { (x | vy | z) +1 |}
® to select operators { x (+ | =) v |}

®* to select fields {| n(.prev | .next)? |}
® toselectarguments {| foo(x | vy, z) |}

® Set must respect the type system

® all expressions in the set must type-check

® all must be of the same type

repeat

® Avoid copying and pasting
® repeat(n){ s} =2 s;s;..5;

Y
N

® each of the n copies may resolve to a distinct stmt
® n can be a hole too.

Example: Reversing bits

pragma options "--bnd-cbits 3 ";
int W = 32;

bit[W] reverseSketch(bit[W] 1in) {

int s = 1;

int r = ?27;

repeat (?77?) {
bit[W] tmpl = (t << s8);
bit[W] tmp2 = (t >> s);
t = tmpl {|} tmp2Z;

// Syntactic sugar for m=??, (tmpl&m | tmp2&~m).
S = s*ry;
}

return t;

Framing the synthesis problem

®* Goal: Find a function from holes to values
® Easy in the absence of generators

bit[W] 1solateSk (bit[W] x) implements i1solatelO {

return !(x + ?27;) & (x + ?272,) ;

®* Finite set of holes so function is just a table

® Call this function @ and the program thus is parameterized with ¢.

