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MCMC Based synthesis

• Approach: 
• Let  be the space of programs 
• Engineer a  such that  is high for “good programs” 

and low for “bad programs” 
• Pick a random start state  
• Simulate the markov process for n steps for some large n. 
• By the fundamental theorem, the probability of  is a good 

program will be higher than the probability that it is a bad 
program
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Metropolis algorithm with symmetric Proposal distribution

• Start with a markov matrix  with  and J(x, y) = J(y, x)

• Initialization: Chose an arbitrary x to be the first observation in the sample and initialize J to 
satisfy the above property.

• For each iteration say t.
• Propose a candidate y for the next sample by picking from J(x_t, y).
• Calculate the acceptance ratio A = , which is used to decide whether to accept or 

reject the candidate.
• Generate a uniform random number u .
• If u <= A then accept y and set x_{t+1} <- y
• If u > A then reject the candidate y and set x_{t+1} <- x

𝐽(𝑥, 𝑦) 𝐽(𝑥, 𝑦) > 0 ↔ 𝐽(𝑦, 𝑥) > 0

π(y)/π(xt)

∈ [0,1]



Metropolis algorithm : Non symmetric case

• Start with a markov matrix  with  
• For each iteration say t.

• Propose a candidate y for the next sample by picking from J(x_t, y).

• Calculate the acceptance ratio A = , which is used to decide whether to 

accept or reject the candidate.
• If A >= 1 then accept y and set x_{t+1} <- y
• If 0 < A < 1 then 

• accept candidate y and set x_{t+1} <- y with probability A 
• reject canditate y and set x_{t+1} <- x with probability (1- A)

𝐽(𝑥, 𝑦) 𝐽(𝑥, 𝑦) > 0 ↔ 𝐽(𝑦, 𝑥) > 0

π(y)
J(xt, y)

/
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How do we prove that K (x, y) gives a stationary distribution \pi

Detailed Balance Equation holds in the above construction:

•   

•

𝜋(𝑥)𝐾(𝑥, 𝑦) = 𝜋(𝑦)𝐾(𝑦, 𝑥)

Probability to be at a position x  

and move to a position y
Probability to be at a position y  

and move to a position x=

For any position our Markov chain can visit, there is as much in-flow as out-flow

And thus the K(x, y) can no longer change, thus the calculate K is a unique stationary 
distribution

∑
𝑥

𝜋(𝑥)𝐾(𝑥, 𝑦) = ∑
𝑥

𝜋(𝑦)𝐾(𝑦, 𝑥) = 𝜋(𝑦)∑
𝑥

𝐾(𝑦, 𝑥) = 𝜋(𝑦)





Module I vs II



Why go beyond examples?



Why is this hard?



Why is this hard?

Inductive generalization vs Deductive specialization



Constraint-based synthesis with Program 
Sketching 

Reading: https://link.springer.com/article/
10.1007/s10009-012-0249-7

11



Constraint-based synthesis

• Key idea1: 
• Search as “curve fitting” 
• “curve” is a parameterized family of functions 

•

• Key idea 2:  
• Define a language to describe parameterized programs 

• Key idea 3:  
• “Solve” instead of search

𝐻  =  { 𝑃[𝑐] 𝑐 ∈ 𝐶} Neo did something 
along these lines
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CBS for complex programs



Program Sketching



Synthesis with constraints

• Overview of the Sketch language 

• Turning synthesis problems into constraints 

• Efficient constraint solving



Language Design Strategy

• Two main approaches for CBS  
• First: Give the user a high level notation to define the program space 

• Then use a compiler to translate that into a parametirct program P[c]. 
•  Brahma (bag of components) 
• SyGuS (CFG) 

• Second: provide the user with a rich and expressive language for directly writing parametric 
programs. 
• significant control over the program space. 
• More complicated inputs required. 
• Sketching



The Sketch Language

• simple imperative language very similar to Java 
• heap allocated structures, high-order functions and polymorphism (generics in 

Java), etc. 
• Additional Unique features: 

• Unknown constants 
• Harnesses 
• Generator functions



Unknown Constants

Extend base language with one construct 
     
Constant hole: ?? 

Synthesizer replaces ?? with a constant 
High-level constructs defined in terms of ??

int bar (int x)
{
    int t = x * ??;
    assert t == x + 
x;
    return t;
} 

int bar (int x)
{
    int t = x * 2;
    assert t == x + 
x;
    return t;
} 

Type is inferred from 
the context



Unknown constant Sets of Expressions

• Expressions with ??  == sets of expressions 
• linear expressions  x*?? + y*?? 
• polynomials   x*x*?? + x*?? + ??  
• sets of variables  ?? ? x : y 



Harnesses/Test Harness

• a function that when invoked must not trigger any assertion violations. 

• A test harness can also take inputs on their own.

A sketch example A test harness



Example: Registerless Swap

• Swap two words without an extra temporary

int W = 32; 

void swap(ref bit[W] x, ref bit[W] y){      
    if(??){ x = x ^ y;}else{ y = x ^ y; }  
    if(??){ x = x ^ y;}else{ y = x ^ y; }  
    if(??){ x = x ^ y;}else{ y = x ^ y; }  
} 

harness void main(bit[W] x, bit[W] y){ 
    bit[W] tx = x; bit[W] ty = y; 
    swap(x, y); 
    assert x==ty && y == tx; 
}



From simple to complex holes

• We need to compose ?? to form complex holes 

• Borrow ideas from generative programming 
• Define generators to produce families of functions 
• Use partial evaluation aggressively



Generators

• Look like a function  
• but are partially evaluated into their calling context 

• Key feature: 
• Different invocations  Different code 
• Can recursively define arbitrary families of programs

A simple generator for set of linear function of  
two parameters 



Properties of Generators

• Generator function can be used anywhere in the code in the same way a function. 
• However different semantics. 

• every call replaced by a concrete piece of code in the space of code fragments 
defined by the generator. 

• Different calls to the generator function can produce different code fragments.

Harness using the generator Concerete program after solving

Are these just glorified Macros?



Real Power:  Recursion
/** 
 * Generate the set of all bit-vector expressions  
 * involving +, &, xor and bitwise negation (~). 
 * the bnd param limits the size of the generated expression. 
 */ 

generator bit[W] gen(bit[W] x, int bnd){ 
    assert bnd > 0; 
    if(??) return x; 
    if(??) return ??; 
    if(??) return ~gen(x, bnd-1); 
    if(??){ 
        return {| gen(x, bnd-1) (+ | & | ^) gen(x, bnd-1) |}; 
    } 
} 



Real Power: Closures + High Order Generators 
generator void rep(int n, fun f){ 
    if(n>0){ 
        f(); 
        rep(n-1, f); 
    }     
}

bit[16] reverseSketch(bit[16] in) { 
    bit[16]  t = in;     
    int s = 1; 
    generator void tmp(){ 
            bit[16] m = ??; 
        t = ((t << s)&m )| ((t >> s)&(~m)); 
        s = s*??; 
    } 
    rep(??, tmp); 
    return t; 
}



Real Power: Higher Order terms + Closures 

Takes a function/gen f and applies  
it n times.

Interesting comp. pattern: a particular kind of  
of operation to be repeated with each iteration a distinct operation



Syntactic Sugar

• {|   RegExp  |} 

• RegExp supports choice ‘|’ and optional ‘?’ 
• can be used arbitrarily within an expression 

• to select operands  {|  (x | y | z) + 1 |} 
• to select operators  {|  x (+ | -) y |} 
• to select fields {| n(.prev | .next)? |} 
• to select arguments {| foo( x | y, z) |} 

• Set must respect the type system 
• all expressions in the set must type-check 
• all must be of the same type



repeat

• Avoid copying and pasting 
•repeat(n){ s}  ➔ s;s;…s;

• each of the n copies may resolve to a distinct stmt 
•n can be a hole too.

n



Example: Reversing bits

pragma options "--bnd-cbits 3 "; 

int W = 32; 

bit[W] reverseSketch(bit[W] in) { 

 bit[W]  t = in;  
 int s = 1; 
 int r = ??; 
 repeat(??){ 
  bit[W] tmp1 = (t << s); 
  bit[W] tmp2 = (t >> s); 
  t = tmp1 {|} tmp2;  
                    // Syntactic sugar for m=??, (tmp1&m | tmp2&~m). 
  s = s*r; 
 } 
 return t; 
}



Framing the synthesis problem

• Goal: Find a function from holes to values 
• Easy in the absence of generators 

• Finite set of holes so function is just a table 
• Call this function  and the program thus is parameterized with .ϕ ϕ

bit[W] isolateSk (bit[W] x) implements isolate0 { 
  
 return !(x + ??1) & (x + ??2) ; 
}


