
CS5733 Program Synthesis
#12.Sketching and constraints based search

Ashish Mishra, September 17, 2024

MCMC Based synthesis

• Approach:

• Let be the space of programs

• Engineer a such that is high for “good programs”

and low for “bad programs”

• Pick a random start state

• Simulate the markov process for n steps for some large n.

• By the fundamental theorem, the probability of is a good

program will be higher than the probability that it is a bad
program

𝜒
𝐾(𝑥, 𝑦) 𝜋(𝑥)

𝑥0

𝑥𝑛

Key step: Engineer K
that has desired
property for 𝜋(𝑥)

Metropolis algorithm with symmetric Proposal distribution

• Start with a markov matrix with and J(x, y) = J(y, x)

• Initialization: Chose an arbitrary x to be the first observation in the sample and initialize J to
satisfy the above property.

• For each iteration say t.
• Propose a candidate y for the next sample by picking from J(x_t, y).
• Calculate the acceptance ratio A = , which is used to decide whether to accept or

reject the candidate.
• Generate a uniform random number u .
• If u <= A then accept y and set x_{t+1} <- y
• If u > A then reject the candidate y and set x_{t+1} <- x

𝐽(𝑥, 𝑦) 𝐽(𝑥, 𝑦) > 0 ↔ 𝐽(𝑦, 𝑥) > 0

π(y)/π(xt)

∈ [0,1]

Metropolis algorithm : Non symmetric case

• Start with a markov matrix with

• For each iteration say t.

• Propose a candidate y for the next sample by picking from J(x_t, y).

• Calculate the acceptance ratio A = , which is used to decide whether to

accept or reject the candidate.
• If A >= 1 then accept y and set x_{t+1} <- y
• If 0 < A < 1 then

• accept candidate y and set x_{t+1} <- y with probability A
• reject canditate y and set x_{t+1} <- x with probability (1- A)

𝐽(𝑥, 𝑦) 𝐽(𝑥, 𝑦) > 0 ↔ 𝐽(𝑦, 𝑥) > 0

π(y)
J(xt, y)

/
π(xt)

J(y, xt)

How do we prove that K (x, y) gives a stationary distribution \pi

Detailed Balance Equation holds in the above construction:

•

•

𝜋(𝑥)𝐾(𝑥, 𝑦) = 𝜋(𝑦)𝐾(𝑦, 𝑥)

Probability to be at a position x

and move to a position y
Probability to be at a position y

and move to a position x=

For any position our Markov chain can visit, there is as much in-flow as out-flow

And thus the K(x, y) can no longer change, thus the calculate K is a unique stationary

distribution

∑
𝑥

𝜋(𝑥)𝐾(𝑥, 𝑦) = ∑
𝑥

𝜋(𝑦)𝐾(𝑦, 𝑥) = 𝜋(𝑦)∑
𝑥

𝐾(𝑦, 𝑥) = 𝜋(𝑦)

Module I vs II

Why go beyond examples?

Why is this hard?

Why is this hard?

Inductive generalization vs Deductive specialization

Constraint-based synthesis with Program
Sketching

Reading: https://link.springer.com/article/
10.1007/s10009-012-0249-7

11

Constraint-based synthesis

• Key idea1:

• Search as “curve fitting”

• “curve” is a parameterized family of functions

•

• Key idea 2:

• Define a language to describe parameterized programs

• Key idea 3:

• “Solve” instead of search

𝐻 = { 𝑃[𝑐] 𝑐 ∈ 𝐶} Neo did something
along these lines

13

CBS for complex programs

Program Sketching

Synthesis with constraints

• Overview of the Sketch language

• Turning synthesis problems into constraints

• Efficient constraint solving

Language Design Strategy

• Two main approaches for CBS

• First: Give the user a high level notation to define the program space

• Then use a compiler to translate that into a parametirct program P[c].

• Brahma (bag of components)

• SyGuS (CFG)

• Second: provide the user with a rich and expressive language for directly writing parametric
programs.

• significant control over the program space.

• More complicated inputs required.

• Sketching

The Sketch Language

• simple imperative language very similar to Java

• heap allocated structures, high-order functions and polymorphism (generics in

Java), etc.

• Additional Unique features:

• Unknown constants

• Harnesses

• Generator functions

Unknown Constants

Extend base language with one construct

	 	 	 	

Constant hole: ??

Synthesizer replaces ?? with a constant

High-level constructs defined in terms of ??

int bar (int x)
{
 int t = x * ??;
 assert t == x +
x;
 return t;
}

int bar (int x)
{
 int t = x * 2;
 assert t == x +
x;
 return t;
}

Type is inferred from
the context

Unknown constant Sets of Expressions

• Expressions with ?? == sets of expressions

• linear expressions	 	 x*?? + y*??
• polynomials	 	 	 x*x*?? + x*?? + ??

• sets of variables	 	 ?? ? x : y

Harnesses/Test Harness

• a function that when invoked must not trigger any assertion violations.

• A test harness can also take inputs on their own.

A sketch example A test harness

Example: Registerless Swap

• Swap two words without an extra temporary

int W = 32;

void swap(ref bit[W] x, ref bit[W] y){ 	

 if(??){ x = x ^ y;}else{ y = x ^ y; }

 if(??){ x = x ^ y;}else{ y = x ^ y; }

 if(??){ x = x ^ y;}else{ y = x ^ y; }

}

harness void main(bit[W] x, bit[W] y){

 bit[W] tx = x; bit[W] ty = y;

 swap(x, y);

 assert x==ty && y == tx;

}

From simple to complex holes

• We need to compose ?? to form complex holes

• Borrow ideas from generative programming

• Define generators to produce families of functions

• Use partial evaluation aggressively

Generators

• Look like a function

• but are partially evaluated into their calling context

• Key feature:

• Different invocations  Different code

• Can recursively define arbitrary families of programs

A simple generator for set of linear function of

two parameters

Properties of Generators

• Generator function can be used anywhere in the code in the same way a function.

• However different semantics.

• every call replaced by a concrete piece of code in the space of code fragments
defined by the generator.

• Different calls to the generator function can produce different code fragments.

Harness using the generator Concerete program after solving

Are these just glorified Macros?

Real Power: Recursion
/**

 * Generate the set of all bit-vector expressions

 * involving +, &, xor and bitwise negation (~).

 * the bnd param limits the size of the generated expression.

 */

generator bit[W] gen(bit[W] x, int bnd){

 assert bnd > 0;

 if(??) return x;

 if(??) return ??;

 if(??) return ~gen(x, bnd-1);

 if(??){

 return {| gen(x, bnd-1) (+ | & | ^) gen(x, bnd-1) |};

 }

}

Real Power: Closures + High Order Generators
generator void rep(int n, fun f){

 if(n>0){

 f();

 rep(n-1, f);

 }

}

bit[16] reverseSketch(bit[16] in) {

 bit[16] t = in;

 int s = 1;

 generator void tmp(){

 bit[16] m = ??;

 t = ((t << s)&m)| ((t >> s)&(~m));

 s = s*??;

 }

 rep(??, tmp);

 return t;

}

Real Power: Higher Order terms + Closures

Takes a function/gen f and applies

it n times.

Interesting comp. pattern: a particular kind of

of operation to be repeated with each iteration a distinct operation

Syntactic Sugar

• {| RegExp |}

• RegExp supports choice ‘|’ and optional ‘?’

• can be used arbitrarily within an expression

• to select operands 	 {| (x | y | z) + 1 |}

• to select operators 	 {| x (+ | -) y |}

• to select fields	 {| n(.prev | .next)? |}

• to select arguments	 {| foo(x | y, z) |}

• Set must respect the type system

• all expressions in the set must type-check

• all must be of the same type

repeat

• Avoid copying and pasting

•repeat(n){ s} ➔ s;s;…s;

• each of the n copies may resolve to a distinct stmt

•n can be a hole too.

n

Example: Reversing bits

pragma options "--bnd-cbits 3 ";

int W = 32;

bit[W] reverseSketch(bit[W] in) {

	 bit[W] t = in;	

	 int s = 1;

	 int r = ??;

	 repeat(??){

	 	 bit[W] tmp1 = (t << s);

	 	 bit[W] tmp2 = (t >> s);

	 	 t = tmp1 {|} tmp2;

 // Syntactic sugar for m=??, (tmp1&m | tmp2&~m).

	 	 s = s*r;

	 }

	 return t;

}

Framing the synthesis problem

• Goal: Find a function from holes to values

• Easy in the absence of generators 

• Finite set of holes so function is just a table

• Call this function and the program thus is parameterized with .ϕ ϕ

bit[W] isolateSk (bit[W] x) implements isolate0 {

	

	 return !(x + ??1) & (x + ??2) ;

}

