CS57335 Program Synthesis

#11.Stochastic Search

Ashish Mishra, September 13, 2024

and/or graph

Recap: Representation-based search

—

Version Space Algebras
(VSA)

Finite Tree Automata
(FTA)

ops: learn-1, intersect, extract
DSL: efficiently enumerable
similar to: bottom-up with OE,
but can store all programs
(and add examples incrementally)

ops: learn-1, intersect, extract
DSL: efficiently invertible
similar to: top-down prop,
but can infer constants

state: represents a set of
observationally-equivalent programs

Equivalence Graphs
(e-grpahs)
ops: rewrite, extract

similar to: term rewriting,
but can store all programs

e-class: represents a set of programs
equivalent up to rewrites

VSA vs FTA vs E-Graphs

e-classes

Stochastic Search

The Synthesis Problem

Behavioral constraints = examples
:1J4)7)210J6J9J2)5] 9 [1)2)4)7)6]

0] > [0]
5,1] =2 [1,5,0]

Search strategy?

Enumerative
Representation-based

Stochastic
Constraint-based

Structural constraints = grammar

L ::= sort(L) | L[N..N]
| L+L | [N] | x
N ::= find(L,N) | ©

Search space

PCFG /

CFG PHOG 277

Made from
likely rules

Enumerative search Weighted Local search
enumerative search

Naive local search petter

program Program

To find the best program:

p := random()
while (true) {
p’ := mutate(p);
if (cost(p’) < cost(p))

P :=p’°;
}

can generate p, from p,
Will never get to @ from p,! (and vice versa) via mutation

We need a more
advanced search!

Stochastic search is
one such appraoch.

Stochastic search in synthesis

Weimer, Nguyen, Le Goues, Forrest. Automatically Finding
Patches Using Genetic Programming. ICSE'0S

Gissurarson, Applis, Panichella, van Deursen, Sands. PropR:
Property-Based Automatic Program Repair. ICSE'22

Schkufza, Sharma, Aiken: Stochastic superoptimization.
ASPLOS'13

Shi, Steinhardt, Liang: FrAngel: Component-Based Synthesis with
Control Structures. POPL'19

Stochastic search in synthesis

Weimer, Nguyen, Le Goues, Forrest. Automatically Finding
Patches Using Genetic Programming. ICSE'0S

Gissurarson, Applis, Panichella, van Deursen, Sands. PropR:
Property-Based Automatic Program Repair. ICSE'22

Schkufza, Sharma, Aiken: Stochastic superoptimization.
ASPLOS'13

Shi, Steinhardt, Liang: FrAngel: Component-Based Synthesis with
Control Structures. POPL'19

Example:

Montgomery multiplication kernel from the OpenSSL big number library

.LO:

movq rsi, r9

movl ecx, ecx

shrq 32, rsi

andl oxffffffff, rod
movq rcx, rax

movl edx, edx

imulq r9, rax

imulq rdx, r9

imulg rsi, rdx

imulg rsi, rcx

addq rdx, rax

jae .L2

movabsq 0x100000000, rdx
addq rdx, rcx

jae .L2
movabsq 0x100000000, rdx
addq rdx, rcx
L2:

movq rax, rsi
movq rax, rdx
shrq 32, rsi
salq 32, rdx
addq rsi, rcx
addq r9, rdx
adcq 9, rcx
addq r8, rdx
adcq 9, rcx
addq rdi, rdx
adcq 9, rcx
movqg rcx, r8
movq rdx, rdi

[Schkufza, Sharma, Aiken ‘13]

.LO:
shlqg
movl
xorq
movq
mulq
addq
adcq
addq
adcq
movq
movq

optimizations.

32, rcx
edx, edx
rdx, rcx
rcx, rax
rsi

r8, rdi
9, rdx
rdi, rax
0, rdx
rdx, r8
rax, rdi

16 lines shorter and 1.6x faster

Uses a different assembly level algorithm than the

original, something not possible with traditional compiler

MCMC and Metropolis Search

Markov Chains

MP : A probabilistic -
process. Probgl?lllty of
transitioning from state

Let y be a finite set

o Probablllty of transitioning from xtoy

Markov Chains

Let y be a finite set

A Markov chain is defined by a matrix K(x, y) Yy X y—> R
. K(x,y) >0 K

.), K(x,y) =

Y

Probability of a series X, X, X5... Q
.P(Xlzy‘X():x)zK(x,y) \
e

Markov Chains

Let y be a finite set
A Markov chain is defined by a matrix K(x, y) Y X y—= R

o K x y) > () A=)
Zny—l K(y,z)?\

Probability of a series X, X, X5...

. P(X, = y| X, =x) = K(x.) Q\

‘P(Xl —) X2:Z|Xo=x) = K(x, y)K(y, z) ¢ -

Markov Chains

Let y be a finite set
A I\/Iarkov chain is defined by a matrix K(x, y) Y X y— R

Probablllty of a series X, X{, X5...
. P(X, =y, X,=1z|X,=x)=K(x,»)K(, z)

P(Xy=z|Xg=x) =), K(x,»)K(,2)
e This is matrix multiplication!

7

K: prob of transitioning from x to y in one step, K*2 : in two steps

KAn :In n steps

Stationary distribution

What is the probability -« of being in a node x at some arbitrary
step?

7(x) > 0 and Z m(x) = 1

X
« T — w(x)K X,
()7) Zx () (pickxfromnand take

* l.e.7t=7xK a step from K(x, y); the
chance of being aty is

Ti(y)

SO stationary
distribution is an

eigenVector of K with
eigenValue 1.

Fundamental theorem of

(finite) Markov chains

It thereisann,s.t. Vx,y. n>ny,=> K”(x, y) > ()

e i.e. the matrix is connected.
o the matrix must also be aperiodic, e.g. rules out processes like

Then K has a unique stationary distribution,
Vx. lIm K"(x,y) = 7n(y)

n— oo

 The n'th step of a run starting at x has probability close to z(y) of being at
yif nis large.

e We can compute the stationary distribution by starting at some state and
then running the markov process for a long time.

e Where we start doesn’t matter

MCMC Based synthesis

Approach:
* Let y be the space of programs

e Engineer a K(x, y) such that z(x) is high for “good programs”
and low for “bad programs”

* Pick a random start state x,,
e Simulate the markov process for n steps for some large n.

By the fundamental theorem, the probability of x, is a good

program will be higher than the probability that it is a bad
pProgram Key step: Engineer K

that has desired

property for

Metropolis algorithm with symmetric Proposal distribution

® Start with a markov matrix J(x, y) with J(x,y) > 0 < J(y,x) > 0 and J(x, y) = J(y, x)

® Initialization: Chose an arbitrary x to be the first observation in the sample based and initialize
J to satisty the above property.

® For each iteration say t.
® Propose a candidate y for the next sample by picking from J(x_t, y).

® Calculate the acceptance ratio A = z(y)/z(x,), which is used to decide whether to accept or
reject the candidate.

® Generate a uniform random numberu € [0,1].
® If u <= Athen accepty and set x_{t+1} <-y
® If u > A then reject the candidate y and set x_{t+1} <- x

Metropolis algorithm : Non symmetric case

® Start with a markov matrix J(x, y) with J(x,y) > 0 & J(y,x) >0

® For each 1teration say t.

® Propose a candidate y for the next sample by picking from J(x_t, y).
(y)) (x,)
J(x,y) J(y,x)

o Calculate the acceptance ratio A = , which 1s used to decide whether to

accept or reject the candidate.
®If A>=1 then accepty and set x_{t+1} <-y
®*If0 <A< 1 then
® accept candidate y and set x_{t+1} <- y with probability A
® reject canditate y and set x_{t+1} <- x with probability (1- A)

Key issues: Applying MH to Program Synthesis:

®* Define a Program Space
® Define a desired stationary distribution 7.
®* Need good estimates of &
® Need a good proposal distribution J
® Tempting to use naive uniform distribution as J
® This does not work well as search.
® Effective & should allow us to judge if program 1s getting closer to be correct.

® J must give priority to programs with similar behaviors to use information
learnt from the search.

Many recent synthesis
applications

Influential work by Schkufza, Sharma Aiken.
e Focus on program optimization

Wide variety of applications in other areas
e Probabilistic programming

o Cognitive Science

e elc.

Stochastic Superoptimization

O o Ul s W DN

WWNNRNNNDNNNDNDNDN R R PR R R
P O WW-OUI s WNRE O W10 U WNFE O W

Example from Schkufza, Sharma and Aiken from ASPLOS 13.

gcc -03
.LO:
movqg rsi, r9
movl ecx, ecx
shrq 32, rsi
andl Oxffffffff, rod
movqg rcx, rax
movl edx, edx

imulg r9, rax
imulqg rdx, r9

imulqg rsi, rdx
imulg rsi, rcx

addqg
jae

movabsg 0x100000000, rdx

addqg
L2:
movqgq
movqgq
shrqg
salqg
addqg
addqg
adcq
addqg
adcq
addq
adcq
movqgq
movqgq

rdx, rax
L2

rdx, rcx

rax, rsi
rax, rdx
32, rsi
32, rdx
rsi, rcx
r9, rdx
0, rcx
r8, rdx
0, rcx
rdi, rdx
0, rcx
rcx, r8
rdx, rdi

shlqg
movl
Xorq
movq
mulqg
addq
adcq
addq
adcq
movq
movq

32, rcx
edx, edx
rdx, rcx
rcx, rax
rsi

r8, rdi
0, rdx
rdi, rax
0, rdx
rdx, r8
rax, rdi

Goal: Synthesize equivalent assembly program that is
significantly more efficient.

The program space

Sequences of assembly instructions of bounded length

The proposal Distribution J (T R)

Transitions that replace

one instruction with a
NOQOP

movq rsi, r9

movl ecx, ecx
sharq 32, rsi D,
NOOP

movq edx, edx

movq rsi, r9
movl ecx, ecx
sharq 32, rsi
xorl Oxffffffff,
movqg edx, edx

12

movq rsi, r9
movl ecx, ecx
sharq 32, rsi
andl Oxffffffff,
movq edx, edx

movq rsi, r9
movl ecx, ecx
sharq 32, rsi
mulg rsi

movq edx, edx

Transitions that change one opcode

r9d

Transitions that change
one operand

movqg rsi, r9
movl ecx, edx
sharqg 32, rsi
andl Oxffffffff, rod
movqg edx, edx

movqg rsi, r9

movl ecx, edx

andl Oxffffffff, rod
sharqg 32, rsi

movqg edx, edx

Transitions that swap
two instructions

Transitions that replace one instruction with another

The stationary distribution

7[(97) — i o—Plea(R, T)+per (R, T))
/

eq (R, T) correctness perf (R, T)
performance
component
component

Cost function

o(R;T) = eq(R; T) + perf(R: T)

® eq: Calculated by running the candidate program R on the test inputs
and computing a distance between its output and the output of the original program
® perf: computed by evaluating the candidate program through a

performance model that assigns a cost to each instruction.

Improvements

search is conducted in two stages

e |n the first stage, the performance component is completely ignored,
allowing the search to discover correct programs that are very different
from the initial one.

o A set of these correct programs discovered in the first phase are used as
starting points for a second phase search that includes the performance
term.

Almost disjoint clusters

4\//

Starting in one cluster, the probability of transitioning to the other is extremely low

Almost disjoint clusters

Introducing more paths, or increasing the probability for the existing ones helps us converge faster
to a distribution that is representative of both clusters

MCMC sampling

Avoid getting stuck in local minima:

p := random()
while (true) {
p’ := mutate(p);
if (random(A(p -> p’)) ‘
p :=p’; v
Aalodon \
} 0'."‘
where .’. (3
 if p? is betterthanp: A(p » p') =1

 otherswise: A(p = p’) decreases with
difference in cost between p? and p

Stochastic search in synthesis

Weimer, Nguyen, Le Goues, Forrest. Automatically Finding
Patches Using Genetic Programming. ICSE’09

Gissurarson, Applis, Panichella, van Deursen, Sands. PropR:
Property-Based Automatic Program Repair. ICSE’22

e Similar but for program repair, uses genetic programming

Schkufza, Sharma, Aiken: Stochastic superoptimization.
ASPLOS13

Shi, Steinhardt, Liang: FrAngel: Component-Based Synthesis with
Control Structures. POPL'19

 Samples from a grammar with bias towards partial solutions

Next: Module Il

®* Synthesizing Complex Programs
® Rich Specifications:

® Reference implementation

® Assertions

® Pre- and post-condition

®* Fancy types
® Richer Program Space:

® Recursive programs

® Imperative programs:

® Pointer manipulating programs.

®* Programs with effectful libraries.

Logistics

®* Milestone 1 deadline: Monday Sept 16.
®* Please reach out to me through email or google classroom.

® | will post this weeks reading by EOD.

