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Recap: Representation-based search



VSA vs FTA vs E-Graphs



Stochastic Search

4



The Synthesis Problem



Search space



Naïve local search

We need a more 
advanced search! 
Stochastic search is 
one such appraoch.



Stochastic search in synthesis



Stochastic search in synthesis



Example: 
Montgomery multiplication kernel from the OpenSSL big number library

[Schkufza, Sharma, Aiken ‘13]

16 lines shorter and 1.6x faster 
Uses a different assembly level algorithm than the 

original, something not possible with traditional compiler  

optimizations.



MCMC and Metropolis Search
Based on “The Markov Chain Monte Carlo Revolution” 
Persi Diaconis



Markov Chains

• Let  be a finite set 
• A Markov chain is defined by a matrix 

•

•
• Probability of transitioning from x to y

𝜒
𝐾(𝑥, 𝑦):𝜒 × 𝜒 → ℝ

𝐾(𝑥, 𝑦) ≥ 0

∑𝑦
𝐾(𝑥, 𝑦) = 1 y

x

𝐾(𝑥, 𝑦)

Probability of 
transitioning from state 
x to state y.

MP : A probabilistic 
process. 



Markov Chains

• Let  be a finite set 
• A Markov chain is defined by a matrix 

•

•
• Probability of a series 

•

𝜒
𝐾(𝑥, 𝑦):𝜒 × 𝜒 → ℝ

𝐾(𝑥, 𝑦) ≥ 0

∑𝑦
𝐾(𝑥, 𝑦) = 1

𝑋0,  𝑋1,  𝑋2…
𝑃(𝑋1 = 𝑦 𝑋0 = 𝑥) = 𝐾(𝑥, 𝑦)

y
x

𝐾(𝑥, 𝑦)



Markov Chains

• Let  be a finite set 
• A Markov chain is defined by a matrix 

•

•
• Probability of a series 

•
•

𝜒
𝐾(𝑥, 𝑦):𝜒 × 𝜒 → ℝ

𝐾(𝑥, 𝑦) ≥ 0

∑𝑦
𝐾(𝑥, 𝑦) = 1

𝑋0,  𝑋1,  𝑋2…
𝑃(𝑋1 = 𝑦 𝑋0 = 𝑥) = 𝐾(𝑥, 𝑦)
𝑃(𝑋1 = 𝑦,  𝑋2 = 𝑧 𝑋0 = 𝑥) = 𝐾(𝑥, 𝑦)𝐾(𝑦, 𝑧)

y

z

x

𝐾(𝑥, 𝑦)

𝐾(𝑦, 𝑧)



Markov Chains
• Let  be a finite set 
• A Markov chain is defined by a matrix 

•

•
• Probability of a series 

•
•

•
• This is matrix multiplication!

𝜒
𝐾(𝑥, 𝑦):𝜒 × 𝜒 → ℝ

𝐾(𝑥, 𝑦) ≥ 0

∑𝑦
𝐾(𝑥, 𝑦) = 1

𝑋0,  𝑋1,  𝑋2…
𝑃(𝑋1 = 𝑦 𝑋0 = 𝑥) = 𝐾(𝑥, 𝑦)
𝑃(𝑋1 = 𝑦,  𝑋2 = 𝑧 𝑋0 = 𝑥) = 𝐾(𝑥, 𝑦)𝐾(𝑦, 𝑧)
𝑃(𝑋2 = 𝑧 𝑋0 = 𝑥) = ∑𝑦

𝐾(𝑥, 𝑦)𝐾(𝑦, 𝑧)

K: prob of transitioning from x to y in one step, K^2 : in two steps  
K^n : in n steps



Stationary distribution

• What is the probability  of being in a node x at some arbitrary 
step? 

•

•
• i.e. 

𝜋(𝑥)

𝜋(𝑥) > 0 𝑎𝑛𝑑 ∑
𝑥

𝜋(𝑥) = 1

𝜋(𝑦) = ∑𝑥
𝜋(𝑥)𝐾(𝑥, 𝑦)

𝜋 = 𝜋𝐾

SO stationary 
distribution is an 
eigenVector of K with 
eigenValue 1.

pick x from π and take 
a step from K(x, y); the 
chance of being at y is 
π(y)



Fundamental theorem of 
(finite) Markov chains

• If there is an  s.t.   
• i.e. the matrix is connected. 
• the matrix must also be aperiodic, e.g. rules out processes like   

•

• The n’th  step of a run starting at  has probability close to  of being at 
 if  is large. 

• we can compute the stationary distribution by starting at some state and 
then running the markov process for a long time. 
• Where we start doesn’t matter

𝑛0 ∀𝑥, 𝑦 .    𝑛 > 𝑛0 ⇒ 𝐾𝑛(𝑥, 𝑦) ≥ 0

∀𝑥 .    lim
𝑛→∞

𝐾𝑛(𝑥, 𝑦) = 𝜋(𝑦)
𝑥 𝜋(𝑦)

𝑦 𝑛

Then K has a unique stationary distribution,  π



MCMC Based synthesis

• Approach: 
• Let  be the space of programs 
• Engineer a  such that  is high for “good programs” 

and low for “bad programs” 
• Pick a random start state  
• Simulate the markov process for n steps for some large n. 
• By the fundamental theorem, the probability of  is a good 

program will be higher than the probability that it is a bad 
program

𝜒
𝐾(𝑥, 𝑦) 𝜋(𝑥)

𝑥0

𝑥𝑛

Key step: Engineer K 
that has desired 
property for 𝜋(𝑥)



Metropolis algorithm with symmetric Proposal distribution

• Start with a markov matrix  with  and J(x, y) = J(y, x)

• Initialization: Chose an arbitrary x to be the first observation in the sample based and initialize 
J to satisfy the above property.

• For each iteration say t.
• Propose a candidate y for the next sample by picking from J(x_t, y).
• Calculate the acceptance ratio A = , which is used to decide whether to accept or 

reject the candidate.
• Generate a uniform random number u .
• If u <= A then accept y and set x_{t+1} <- y
• If u > A then reject the candidate y and set x_{t+1} <- x

𝐽(𝑥, 𝑦) 𝐽(𝑥, 𝑦) > 0 ↔ 𝐽(𝑦, 𝑥) > 0

π(y)/π(xt)

∈ [0,1]



Metropolis algorithm : Non symmetric case

• Start with a markov matrix  with  
• For each iteration say t.

• Propose a candidate y for the next sample by picking from J(x_t, y).

• Calculate the acceptance ratio A = , which is used to decide whether to 

accept or reject the candidate.
• If A >= 1 then accept y and set x_{t+1} <- y
• If 0 < A < 1 then 

• accept candidate y and set x_{t+1} <- y with probability A 
• reject canditate y and set x_{t+1} <- x with probability (1- A)

𝐽(𝑥, 𝑦) 𝐽(𝑥, 𝑦) > 0 ↔ 𝐽(𝑦, 𝑥) > 0

π(y)
J(x, y)

/
π(xt)

J(y, x)



Key issues: Applying MH to Program Synthesis: 

• Define a Program Space 

• Define a desired stationary distribution . 
• Need good estimates of 

• Need a good proposal distribution 
• Tempting to use naive uniform distribution as 

• This does not work well as search.
• Effective  should allow us to judge if program is getting closer to be correct.

•  must give priority to programs with similar behaviors to use information 
learnt from the search.

𝜋
𝜋

J
J

𝜋
J



Many recent synthesis 
applications

• Influential work by Schkufza, Sharma Aiken. 
• Focus on program optimization 

• Wide variety of applications in other areas 
• Probabilistic programming 
• Cognitive Science 
• etc.



Stochastic Superoptimization

Example from Schkufza, Sharma and Aiken from ASPLOS 13. 

Goal: Synthesize equivalent assembly program that is 
significantly more efficient.



The program space

• Sequences of assembly instructions of bounded length



The proposal Distribution  (T R)J

movq rsi, r9 
movl ecx, ecx 
sharq 32, rsi 
andl 0xffffffff, r9d 
movq edx, edx 
…

𝑝𝑜𝑝𝑐

𝑝𝑠

𝑝𝑖

𝑝𝑢

movq rsi, r9 
movl ecx, ecx 
sharq 32, rsi 
NOOP 
movq edx, edx 
…

movq rsi, r9 
movl ecx, ecx 
sharq 32, rsi 
xorl 0xffffffff, r9d 
movq edx, edx 
…

movq rsi, r9 
movl ecx, edx 
sharq 32, rsi 
andl 0xffffffff, r9d 
movq edx, edx 
…

movq rsi, r9 
movl ecx, edx 
andl 0xffffffff, r9d 
sharq 32, rsi 
movq edx, edx 
…

movq rsi, r9 
movl ecx, ecx 
sharq 32, rsi 
mulq rsi 
movq edx, edx 
…

Transitions that change  
one operand

Transitions that swap 
two instructions

Transitions that replace one instruction with another

Transitions that replace 
one instruction with a 
NOOP

Transitions that change one opcode



The stationary distribution

  𝜋(𝒯) =
1
𝑍

 𝑒−𝛽(𝑒𝑞(ℛ,  𝒯)+𝑝𝑒𝑟𝑓(ℛ, 𝒯))

eq (R , T) correctness 
component

perf (R , T) 
performance 
component



Cost function

• eq: Calculated by running the candidate program R on the test inputs  
and computing a distance between its output and the output of the original program 
• perf: computed by evaluating the candidate program through a  
performance model that assigns a cost to each instruction.



Improvements

• search is conducted in two stages  
• In the first stage, the performance component is completely ignored, 

allowing the search to discover correct programs that are very different 
from the initial one.  
• A set of these correct programs discovered in the first phase are used as 

starting points for a second phase search that includes the performance 
term. 



Almost disjoint clusters

Starting in one cluster, the probability of transitioning to the other is extremely low



Almost disjoint clusters

Introducing more paths, or increasing the probability for the existing ones helps us converge faster 
to a distribution that is representative of both clusters



MCMC sampling



Stochastic search in synthesis



Next: Module II

• Synthesizing Complex Programs 
• Rich Specifications: 

• Reference implementation 
• Assertions 
• Pre- and post-condition 
• Fancy types 

• Richer Program Space: 
• Recursive programs  
• Imperative programs: 

• Pointer manipulating programs. 
• Programs with effectful libraries.



Logistics 

• Milestone 1 deadline: Monday Sept 16. 
• Please reach out to me through email or google classroom. 
• I will post this weeks reading by EOD.


