CS57335 Program Synthesis

#10.Representation Based Search-Ii

Ashish Mishra, September 03, 2024

Recap

®* Representation-Based Search

|dea:

1. build a data structure that compactly represents good parts of the
program space

2. extract solution from that data structure

®* Compact representation of the search space:
®* And/Or Graphs
® Version Spaces and Algebra :

® Join and Union Nodes
®* FlashFill

VSAs Again

Version Space Formulation

Hypothesis space H

e Space of possible functions In — Out

Version Space V.S, , € H
* H is the original hypothesis space

» Dis aset of examplesi; o,

cheVSypeVi,oeD h(i)=o0

Hypothesis space provides restriction bias

e Defines what functions one is allowed to consider
e Preference bias needs to be provided independently

Partial Orders

Set P

Partial order < such that Vx,y,z&P

¢ X <X (reflexive)

e X<vyandy=<sximpliesx=y (asymmetric)
e X<vandy=<zimpliesx<z (transitive)

Can use partial order to define

e Upper and lower bounds
e Least upper bound
e Greatest lower bound

Upper Bounds

If SC P then

« X&P is an upper bound of S if Vy&S. y < x
o X&EP is the least upper bound of S if

e X isan upper bound of S, and
« x =<y forall upper boundsy of S

e V -join, least upper bound, lub, supremum, sup

e v Sistheleast upper bound of S
e XV Vistheleast upper bound of {x,y}

e Often written as v as well

Lower Bounds

If S C P then

— XEP is a lower bound of S if Vy&ES. x <y

— XEP is the greatest lower bound of S if

* X is a lower bound of S, and
» vy <X for all lower bounds y of S

— A - meet, greatest lower bound, glb, infimum, inf

* A S is the greatest lower bound of S
* X AY is the greatest lower bound of {x,y}

e Often written as - as well

L attices

If X A yand x v y exist for all x,y&P
then P is a lattice

If AS and vS exist forallSCP
then P is a complete lattice

All finite lattices are complete

Example of a lattice that is not complete

e |ntegers |

e Foranyx, vEI, x v y=max(x,y), X A y=min(x,y)
« But v land A | do not exist

o | U {+20,—0 }is a complete lattice

Partial Ordering of hypothesis

Partial order »c»,
* N, is “better” than A,

Ex: For boolean hypothesis
e “better” == more general

o h T h, & (hy = h,)

For booleans, VS forms a lattice
° hl,hze VS:>h1|_|h2=h1/\h2€ VS

Most specific hypothesis that
satisfies the observations

Boundary set representable

You can represent a VS by the pair (G,S) where

* G is most general hypothesis (i.e. 1)
e Sis the most specific (i.e. 1)

Applies in general when hypothesis space is partially ordered and
version space is a lattice

Example: FindSuffix(T)

rs;: move to the position right before the next occurrence of .

FS.,
—

We shall go on to the end. We |[shall fight in France, we |shall fight on

the seas and oceans, we shall fight with growing confidence and FS g
growing strength in the air,...
FS"Shall"
FS"Shall fight"
FS"Shall fight on"

FS.

shall fight on the seas and oceans, we shall fight..."

Example: FindSuffix

rs;: move to the position right before the next occurrence of .

\ FS.
We shall go on to the end, shall fight in France, we |shall fight on
the seas and oceans, we |shall\fight with growing coﬂence and ESo g
growing strength in the air,...
FS"Shall"
FS"Shall fight"
FS"Shall fight on"

FS.

shall fight on the seas and oceans, we shall fight..."

Example: FindSuffix

rs;: move to the position right before the next occurrence of .

FSH "

We shall go on to the end‘./We\tll fight in France, we |shall fight on

the seas and oceans, we |shalkfight with growing coﬂence and ESogpy
growing strength in the air,...

FS"Shall"

FS"Shall fight"

Example: FindSuffix

rs,: move to the position right before the next occurrence of .

We shall go on to the end. shall fight in France, we |shall fight on
the seas and oceans, we |shalkfight with growing coﬂence and ESogpy

growing strength in the air,...

FS"Shall"

T1 S T2 iff T1 pPr efix T2
glb(T,T5) = longest common prefix of T and 75 ESvshant fight
lub(T1,T5) = shortest string that has 77 and T as prefix

Is this a lattice?

VSs for the two movements

® The set of functions consistent with moving the cursor from position 1 to position 2 is
concisely represented by the range

e ["s", "shall fight on the seas and oceans...in the air."].

® The set of functions consistent with moving the cursor from position 2 to position 3 is
concisely represented by the range

e ["sh", "shall fight with growing confidence and growing strength in the air."]

® The set of functions for both the movements:

[z, ap) N [by, by = [lub(ay, b;), glb(ap, by))]

. ["sh", "shall fight "1.

ldea

If your hypothesis space is partially ordered and your VS are
boundary set representable, you can represent and search very
efficiently

If they are not?

Break them down into simpler hypothesis spaces!

Union And Join

VS pUVSy p=VSyun, b

VSh,p, W VSp,p, =
i(hl,hz) hy € VSyp » by € VSyp, Chy,hy), D)}
. Where D, = {dli}izO and D, = {dé}izo and D = {<d{’d£>}i=0 i

o C({hy,h,), D) means that (h, h,) is consistent with the input output pairs in D
What does {h;, h,) mean? What about (d;,d,)?

o Pair
» Composition (hl,h2> = h, e h, and (dl,d2> = (d,.in, d,.out)

Representation-based search

and/or graph

Version Space Algebras Finite Tree Automata Equivale‘nce Graphs
(VSA) (FTA) (e-grpahs)

ops: learn-1, intersect, extract
DSL: efficiently invertible
similar to: top-down prop,
but can infer constants

Finite Tree Automata

- final (root) state

states

states final state(s) * 1 o eitione
A = (QIF) Qf)A>

ranked transitions
alphabet f(Ch: ""qn) —q o

VSAvs FTA

Both are and-or graphs

FTA state = VSA union node

* in VSAs singleton unions
are omitted

FTA transition = VSA join node

F'TA Formally |

Definition 2.1. (FTA) A (bottom-up) finite tree automatos
A = (Q,F,Qr,A) where Q is a set of states, Qr C Qisas 1 ¢

transitions (rewrite rules) of the form f(qi, -+ ,9n) = qwher iy

0 A —1), annotated with states.

Example: (FTA) Consider the tree automaton A defined by states QO = {q¢,q1}, Fo = {0,1},
Fy = {=}, F, = {A}, final states Qr = {qo}, and the following transitions A:

1 — q; 0 — qo A(Gosq0) = @ A(q0.q1) — qo
-(q0) > g1 (q1) > q AG1,9) = q Aq1,.91) = g1

A term t is accepted by an FTA if we can rewrite t to some state g € Qf using rules in A.

Accepts those propositional Logic Formulas which evaluate to false

'TA-based search

Synthesis of Data Completion Scripts using Finite Tree Automata
Xinyu Wang, Isil Dillig, Rishabh Singh, OOPSLA’17

Program Synthesis using Abstraction Refinement
Xinyu Wang, Isil Dillig, Rishabh Singh, POPL’18

Searching Entangled Program Spaces
James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-
Lezama, Nadia Polikarpova. ICFP'22

'TA-based search

Synthesis of Data Completion Scripts using Finite Tree Automata
Xinyu Wang, Isil Dillig, Rishabh Singh, OOPSLA’17

Program Synthesis using Abstraction Refinement
Xinyu Wang, Isil Dillig, Rishabh Singh, POPL’18

Searching Entangled Program Spaces
James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-
Lezama, Nadia Polikarpova. ICFP'22

Example

Grammar
N ::= id(V) | N+ T | N * T
2 | 3

X

—
|

Spec

1 =29

PBE with Finite Tree Automata

(A, Z) {(N,9)}
Ae{N,T,X} o final states
qs A = (Q,F,Qr,)
N
alphabet transitions

f(Ch») Qn) — (

: *
1d, +, +(<N,1>,<T,2>) > <N, 3>

+(qx» 47) = Gr

PBE with Finite Tree Automata

<
|

129

Q : Set of concrete values

Transitions : Using Concrete semantics.

id(v) | N+ T | N* T () CirclesforN

2 | 3

x

Discussion

What do FTAs remind you of in the enumerative world?
 FTA ~ bottom-up search with OE

How are they different?

* More size-efficient: sub-terms in the bank are replicated, while in the
FTA they are shared

* Hence, can store all terms, not just one representative per class
* Can construct one FTA per example and intersect
* More incremental in the CEGIS context!

'TA-based search

Synthesis of Data Completion Scripts using Finite Tree Automata
Xinyu Wang, Isil Dillig, Rishabh Singh, OOPSLA’17

Program Synthesis using Abstraction Refinement
Xinyu Wang, Isil Dillig, Rishabh Singh, POPL’18

Searching Entangled Program Spaces
James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-

Lezama, Nadia Polikarpova. ICFP'22

Abstract FTA

Challenge: FTA still has too many states

ldea:
* instead of one state = one value
* we can do one state = set of values (= abstract value)

Abstract FTA

[Wang, Dillig, Singh POPL'18]

id(V) | N+ T | N*T ()

T:i=2|3 []
x & o
3] 2
1 29
What now?
* idea 1: enumerate from reduced space These Predicates are

the abstractions

e idea 2: refine abstraction!

Abstract FTA

N :
T::=2\3|:
Ve O

1 =29

Predicates: {even, < 3, ...}

id(V) [N+ T | N*T ()

solution: 1d(x)*3

3

Representation-based search

and/or graph

Version Space Algebras Finite Tree Automata Equivalgnce Graphs
(VSA) (FTA) (e-grpahs)

ops: learn-1, intersect, extract ops: learn-1, intersect, extract

DSL: efficiently invertible DSL: efficiently enumerable
similar to: top-down prop, similar to: bottom-up with OE,
but can infer constants but can store all programs

(and add examples incrementally)

state: represents a set of
observationally-equivalent programs

VSA vs FTA vs E-Graphs

e-classes

Program search with e-graphs

Equality saturation: a new approach to optimization
Ross Tate, Michael Stepp, Zachary Tatlock, Sorin Lerner, POPL’09

egg: Fast and Extensible Equality Saturation
Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,

Zachary Tatlock, Pavel Panchekha, POPL’21

Semantic Code Search via Equational Reasoning
Varot Premtoon, James Koppel, Armando Solar-Lezama. PLDI’20

Equality saturation

Program optimization via rewriting:

(a ¥ 2) / 2

= a * (2 / 2)

—> a * 1

—> d

useful rules: not so useful:
(x *y) / z=x%*(y / z) X ¥ 2 =x<< 1

X / x =1 X *y =y *X

X *1 =X

Challenge: which ones to apply and in what order?

ldea: all of them all the time!

Equality saturation

Initial term: (a * 2) / 2
Rewrite rules:
(x *y) / z=x*(y/ z)
X / x =1
X *1 =X

X ¥ 2 = x << 1

X *y =y *X

Equality saturation

Initial term: (a * 2) / 2
Rewrite rules:
(x *y) /z=x*(y / z)
X / x =1
X *1 =X
X * 2 =X<<1

X *y =y *X

Equality saturation

Initial term: (a * 2) / 2

Rewrite rules: —)
(x *y) [/ z=x*(y/ 2) :\}
x/x=1 (0
x*1=x N\ _—_—] _ " \ r__

X * 2 = X << 1

X *y =y *X

Equality saturation

Initial term: (a * 2) / 2

Rewrite rules: f—)
(x*y) /z=x*(y/2) 1/ N
«</x=1 (7
x*¥*1=x N _— T \ r__

X * 2 =X << 1

X *y =y *X

Equality saturation

Initial term: (a * 2) / 2

Rewrite rules: f— — \,

(x*y) /z=x*(y/2) L/ N L
x/x=1 (N
X *¥1 =X

X * 2 = x << 1

X *y =y *X

Equality saturation

Initial term: (a * 2) / 2
Rewrite rules:
(x *y) / z=x*(y/ z)
X / x =1
X ¥ 1 =X

X ¥ 2 = x << 1

X ¥y=y*Xx

Equality saturation

Initial term: (a * 2) / 2
Rewrite rules:
(x *y) / z=x%*(y / z)
X / x =1
X *1 = X
X * 2 =Xx<<1

X *y =y *X

Equality saturation

Initial term: (a * 2) / 2

Rewrite rules:

(x *y) / z=x*(y/ z)
X/ x =1

X ¥ 1 =X

X ¥ 2 = x << 1

X *y=y*X

Equality saturation

extract smallest

Initial term: (a * 2) / 2
Rewrite rules:
(x *y) / z=x*(y / z)
X/ x =1
X *1 =X
X *2 =x<<1

X *y =y *X

Representation-based search

and/or graph

—

Version Space Algebras
(VSA)

Finite Tree Automata
(FTA)

ops: learn-1, intersect, extract
DSL: efficiently enumerable
similar to: bottom-up with OE,
but can store all programs
(and add examples incrementally)

ops: learn-1, intersect, extract
DSL: efficiently invertible
similar to: top-down prop,
but can infer constants

state: represents a set of
observationally-equivalent programs

Equivalence Graphs
(e-grpahs)
ops: rewrite, extract

similar to: term rewriting,
but can store all programs

e-class: represents a set of programs
equivalent up to rewrites

Projects

Project Goal

®* Deeper understanding of the ideas discussed in the class and in the reading
assignments.

® by (re)-implementing some of the papers main algorithm.
®* Extending the behavioral, structural or the search strategy in some of these works.

®* Applying synthesis to some novel domain: e.g. robotics, compilers, networks,
databases, logic, hardware designs, etc.

® List of projects is provided on the course page.

® Surely, welcome to propose your own idea.

Evaluations and Milestones.

®* M1: Discussion about your idea with me, what papers is your idea based on, what do you plan to do.10%
® 1t will allow us to gauge the proposal in terms of if it is doable in the given time.
® | can suggest some related papers and open-source implementations.

®* We can revise the problem, making it more palpable for the class project.

®* M2: Formal 1-2 page proposal, this should include: 15%

® a concrete example, showing input and output for the synthesizer and how does the Algorithm roughly works on

the input.

®* E1: Execution of the Idea!
® M3 : Final
® Presentation and 10%
® Report (3-8 pages) in PACML PL format. 15%

