
Ashish Mishra

CS5733 Program Synthesis
#1. Introduction and Overview

Instructor

Ashish Mishra
• Asst. Professor at CSE
• Before: Postdoc, Purdue CS,

Programming Languages Group.
• Even before: IISc, CSA, PhD
• Research Goal: Help

programmers write correct and
trustworthy software.

• Areas: Programming Languages,
Program Verification, Synthesis.

Logistics

• Lecture:
• When: Tuesdays 2:30 - 3:55 pm, Fridays 4:00 - 5:25 pm

• Where: C-LH5

• Course Website: Please register on Google Classroom link.
• https://aegis-iisc.github.io/cs5733/

• Office Hours:
• After the class OR with appointment a few hours before.

https://aegis-iisc.github.io/cs5733/

Goals and Activities

Evaluation

• Class Participation : 5%
• Ask/answer questions in class
• Participate in discussions on Classroom

• Paper Reviews : 25 %
• 10 papers

• Midterm : 20 %
• Final Course Project : 50 %

• Team formed by deadline: 5%
• 1-page project proposal: 15%
• Project presentation: 15%
• Final report: 15%

Paper Reviews

• Due on Wed of weeks 2 onwards, by the end of the day
• First review due next week

• Posted on the Reading List at least a week before due date

• Reviews submitted via a Google Form: see course page
• Link posted on Reading List (add this to the page)

• Review content: see course page
• Discussion:

• before due date: discuss on Google Classroom

• after due date: discuss in class

Project

• Kinds of projects:
• Re-implement techniques from a paper

• Apply existing synthesis framework to a new domain

• Extend/improve existing synthesis algorithm or tool

• Develop a new synthesis algorithm or tool …

• Judged in terms of
• Quality of execution

• Originality

• Scope

Project

• Teams of 1-2
• Pick a project:

• List of suggested projects coming soon on Google
Classroom

• Please talk to me!

• One page: explain what you plan to do and
give some evidence that you’vestarted to
work on it

• Presentations in last few classes
• ~10-15 min per project

• 3-8 pages, structured like a research paper

Lets begin the good stuff…

The goal: Automated Programming

A classic goal

What is Program Synthesis

• Automatically finding programs
• from the underlying programming language/set of components.
• satisfying the user intent, expressed using some constraints.

This sounds familiar: Compiler/Logic Prog/ML

• Compilers:
• Fully specified High-Level code Low-level machine rep.

• Syntax-directed translation.

• Logic Programming
• dream: express the requirements in a logical form.

• generic algorithm for all problems.

• ML
• Find a function/learned model, whose behavior closely matches the dataset.

• the space of functions that the algorithm considers is very tightly prescribed

• linear classifiers, decision trees and neural networks

Synthesis: discover
how to perform the
desired task. Some
notion of Search

Synthesis: general
algorithms for general
classes of programs,
that support recursion
or other forms of
iteration

Synthesis: Example

15

sort: list -> list

reverse: list -> list

take: list -> int -> list

sum: list -> int

best_ksum: (l : list) -> (k : int) -> int

49 62 82 54 76
k=2

158

query

best_ksum l k = sum (take (reverse (sort l)) k)

library

i/o examples{
Library/Language }

User Intent

Modern Program Synthesis: FlashFill

[Gulwani 2011]

FlashFill : A Feature of Excel 2013
[Gulwani 2011]

FlashFill : A Feature of Excel 2013

Under the hood

Major Idea is VSAs

Modern Program Synthesis: Sketch

• Problem: isolate the least significant zero bit in a word
• example: 0010 0101 → 0000 0010

• Easy to implement with a loop

• Can this be done more efficiently with bit manipulation?

• Trick: adding 1 to a string of ones turns the next zero to a 1

• i.e. 000111 + 1 = 001000

[Solar-Lezama 2013]

Sketch: space of possible implementations

Sketch Idea : program space
as a parametric program P[c]

Different values of c gives
different program in the
space

translate requirements on the
behavior of the program P[c]
into constraints on the
parameters c.

Any value of c that satisfies the constraints is guaranteed to lead to a program
satisfying all the requirements.

Missing constants!

Sketch: synthesis goal

Sketch: output

Modern Program Synthesis: Synquid
[Polikarpova et al. 2016]

Synquid: synthesis goal and components

Synquid Output

Modern Program Synthesis: GitHub Copilot

Other Program Synthesis Successes
Robotics design and path planning Data Migration

Explainable AI (XAI)

Clement, T. et. al. 2023

Program Synthesis

Notice the Duality with Program Verification

Dimensions in Program Synthesis
[Gulwani 2010]

Behavioral Spec

• How do you tell the system what the program should do?
• What is the input language / format?

• What is the interaction model?

• What happens when the intent is ambiguous?

Q: What did the behavioral spec look like in FlashFill / Sketch /
Synquid / Copilot?

Behavioral Spec: Examples

• Input/output examples
• Reference implementation
• Formal specifications (pre/post conditions, types, ...)
• Natural language
• Context

Structural Spec

• What is the space of programs to explore?
• Large enough to contain interesting programs, yet small enough to exclude

garbage and enable efficient search

• Built-in or user-defined or learned from existing code?

Q: What did the structural spec look like in FlashFill / Sketch / Synquid /
Copilot?

Structural Spec: Examples

• Built-in DSLs — e.g. DSL for mathematical expressions/ Excel
• User-defined DSL (grammar)
• User-provided components. — Component-based synthesis —-
• Languages with synthesis constructs

• e.g. generators in Sketch

• Learned language model

Search Strategies

• Synthesis is search:
• Find a program in the space defined by structural constraints that satisfies

behavioral constraints

• Challenge: the space is astronomically large
• The search algorithm is the heart of a synthesis technique

• How does the system find the program you want?
• How does it know it’s the program you want?

• How can it leverage structural constraints to guide the search?

• How can it leverage behavioral constraints to guide the search?

Search Strategies: Examples

• Enumerative (explicit) search
• exhaustively enumerate all programs in the language in the order of increasing size

• Deductive
• Top-down search with recursive reduction of problem to smaller ones.

• Stochastic and Statistical search
• random exploration of the search space guided by a fitness function

• Representation-based search
• use a data structure to represent a large set of programs

• Constraint-based search
• translate to constraints and use a solve

Applications

• Data Wrangling
• Transformations

• Syntactic String Transformations
FirstName.Lastname@domain Firstname Lastname

• Semantic Transformations
selling price =

f (Name, Selling date, MarkupRec, CostRec)

• Splitting Table Transformations

• Extractions

• Layouts

[Gulwani 2010]

More Applications (Many of these will be part of the Projects)

• Graphics Programming
• Code Repair
• Code Suggestions
• Synthesizing Error-prone, hard to write programs:

• Distributed Programming : CRDTs

• Concurrent Programs:

• Modeling of Systems
• Probabilistic Programs

Structure of the course

• Module 1: Synthesis of Simple Programs
• Easy to decide when a program is correct

• Challenge: search in a large space

• Module 2: Synthesis of Complex Programs
• Deciding when a program is correct can be hard

• Search in a large space is still a problem

• Module 3: Advance Topics
• Neural Synthesis,Neural + Symbolic Approaches, Synthesis for xAI

• Synthesis + X (X {Frameworks, Compilers, Network, Databases, etc.})∈

Reading Weeks 1 and 2

• Topic: Enumerative synthesis from examples
• Paper: Alur, Radhakrishna, Udupa. Scaling Enumerative Program Synthesis via Divide and

Conquer

• Review due Wednesday

• Link to PDF on the course web page

• Submit through Google Form (link will be in webpage/Classroom)
• Project:

• Teams due in two weeks.

• Submit through a Google Sheet (check email for invite and instructions)

Announcements

• Non-CS students
• Registration on ERP as well as Google Classroom
• Start looking for Projects
• Plagiarism Policy.

• A bit different.

