
Close is Good Enough: Component-Based Synthesis Modulo

Logical Similarity

ASHISH MISHRA, IIT Hyderabad, India

SURESH JAGANNATHAN, Purdue University, USA

Component-based synthesis (CBS) aims to generate loop-free programs from a set of libraries whose methods

are annotated with specifications and whose output must satisfy a set of logical constraints, expressed as a

query. The effectiveness of a CBS algorithm critically depends on the severity of the constraints imposed by

the query. The more exact these constraints are, the sparser the space of feasible solutions. This maxim also

applies when we enrich the expressivity of the specifications affixed to library methods. In both cases, the

search must now contend with constraints that may only hold over a small number of the possible execution

paths that can be enumerated by a CBS procedure.

In this paper, we address this challenge by equipping CBS search with the ability to reason about logical
similarities among the paths it explores. Our setting considers library methods equipped with refinement-type

specifications that enrich ordinary base types with a set of rich logical qualifiers to constrain the set of values

accepted by that type. We perform a search over a tree automata variant called Qualified Tree Automata
that intelligently records information about enumerated terms, leveraging subtyping constraints over the

refinement types associated with these terms to enable reasoning about similarity among candidate solutions

as search proceeds, thereby avoiding exploration of semantically similar paths.

We present an implementation of this idea in a tool called Hegel and provide a comprehensive evaluation

that demonstrates Hegel’s ability to synthesize solutions to complex CBS queries that go well-beyond the

capabilities of the existing state-of-the-art.

ACM Reference Format:
Ashish Mishra and Suresh Jagannathan. 2025. Close is Good Enough: Component-Based Synthesis Modulo

Logical Similarity. 1, 1 (August 2025), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Component-based synthesis (CBS) aims to generate loop-free programs from a library of components,
typically defined as methods provided by an API. At the heart of any CBS implementation is a

search problem over a hypothesis space of programs that “glue” components together using basic

control primitives, such as conditionals and function applications. If the attributes defining the

behavior of a component are not overly constrained, or when queries are reasonably general, the

search for a feasible solution can be tractable. When this is not the case, however, the search can

become substantially more difficult because the number of feasible programs that represent a

solution is a much smaller fraction of the search space.

Intuitively, we can define CBS search as a reachability analysis over a graph that relates candidate

methods based on their type or other similar defining attributes. For example, a node in this

graph associated with a method that has a particular result type can be connected to any node

Authors’ addresses: Ashish Mishra, IIT Hyderabad, India, mishraashish@cse.iith.ac.in; Suresh Jagannathan, Purdue Univer-

sity, USA, suresh@cs.purdue.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Association for Computing Machinery.

XXXX-XXXX/2025/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2025.

ar
X

iv
:s

ub
m

it/
67

06
03

2
 [

cs
.P

L
]

 1
6

A
ug

 2
02

5

2 Anonymous

corresponding to a method that accepts an argument of this type. Such connections can be used by

the synthesizer to produce a candidate solution that sequences these methods together, yielding a

subgraph that connects input sources (e.g., function arguments) to output targets (i.e., queries).

Prior work [11, 16, 22] has considered the construction of such graphs using simple type-

based specifications. In this paper, we propose to allow richer query specifications in the form

of refinement types [21] that both decorate library methods and serve as the basis for synthesis

queries. Fortunately, advances in automated theorem proving have made it increasingly common

to have libraries be equipped with such rich specifications [5, 29], and there is no reason to believe

that this trend will not continue to accelerate in the future, making our setup both practical and

topical. Indeed, the idea of using refinement type specifications to guide a synthesis procedure

has been explored in a number of other recent systems [25, 26]; our focus on devising an efficient

CBS procedure that must contend with a sparse solution search space differentiates our work in a

number of significant ways from these other efforts, as we describe below.

Devising an efficient CBS implementation in the presence of fine-grained, complex specifications

enabled by the use of refinement types is challenging because the constraints defined by a type’s

refinement may greatly restrict the set of feasible solutions. Simple enumerative methods are,

therefore, unlikely to be effective in this setting. To address this challenge, we devise a novel

tree automata representation, called Qualified Tree Automata (QTA), as an extension of finite tree

automata [6] with constraints. A distinguishing feature of a QTA is its support for logical implication

constraints, which allows us to identify semantically-related portions of the automata. In particular,

library methods and qualifiers in the method’s refinement type are treated as symbols for the QTA;

implication constraints over transitions allow modeling and reasoning about subtyping constraints

directly within the automata. Consequently, any program accepted by a QTA is well-typed under

the typing semantics of the refinement type system.

We leverage a QTA’s structure to develop a CBS algorithm that tracks both (i) irrelevant portions

of the automata, i.e., portions of the automata that do not correspond to well-typed terms, as

well as (ii) semantic similarities between terms, leveraging the use of a logical subtyping relation

during exploration to prune logically similar paths during search. Our main insight is that the

notion of intersection available on finite tree automata naturally generalizes to a notion of semantic
intersection over QTAs that can be exploited to yield an efficient enumeration of the term space.

We present two QTA reduction procedures that concretize this intuition: a) a pruning strategy to

eliminate unproductive (sub)automata and b) a semantic similarity mechanism that uses the type

system’s subtyping relation to identify logically similar terms. These techniques enable efficient

exploration even when the set of feasible solutions is very small.

This paper makes the following contributions:

• We present a new approach to address scalability and expressivity limitations in existing

CBS frameworks, especially in the presence of expressive type-based queries that impose

significant semantic constraints on the set of feasible solutions.

• Our main insight entails directly embedding refinement-type specifications into a tree au-

tomata representation tailored to compactly represent sparse search spaces.

• We develop a specification-guided construction procedure of the search space used by the

synthesizer using QTAs, instantiated with two reduction strategies to allow efficient pruning

and compaction of the search space. We show that our algorithm is both sound and complete.

• We present a detailed evaluation study using Hegel, a tool that incorporates these ideas and
provides CBS capabilities for OCaml programs. Our results demonstrate the feasibility of

efficiently synthesizing complex CBS queries even when the solution space is very sparse.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 3

These results support our claim that Hegel enables the solution of a variety of complex CBS

problems that are outside the capabilities of existing approaches.

The remainder of the paper is organized as follows. In the next section, we provide additional

motivation and a detailed overview of our synthesis approach. Section 3 provides background

definitions. Section 4 formalizes QTAs. Section 5 presents our synthesis algorithm. Section 6

discusses our QTA reduction strategies. Soundness results are given in Section 7. Details about the

implementation, along with benchmark results, are presented in Sections 8.4 and 9. Related work is

given in Section 10, and conclusions are presented in Section 11.

2 MOTIVATION AND OVERVIEW

We motivate our approach using the synthesis problem shown in Figure 1. The synthesizer takes

two inputs. The first is a library of OCaml functions specified using their type signatures. Figure 1(a)

shows a portion of this library relevant to the example; it includes functions over lists, integers,

tuples, etc. For example, splitAt is a function that takes an integer, a polymorphic list and returns a

pair of polymorphic lists. For each function, we also present a commented-out refinement type

specification, which can be ignored for the moment.

The second input to the synthesizer is a query, also represented as a type signature. This is given

the name goal in Figure 1(b). A solution to the query is a synthesized OCaml function that, given

two integers and a list, produces a pair of lists of the same type as its argument list. The query in

this example is quite liberal in the solutions it admits. Figure 1(c) shows two out of many possible

solutions.

To compute these solutions, the task of a component-based synthesizer is to search for a valid

composition of functions found in the library, satisfying the type signature of each function such

that the type of the composition aligns with the query type. A standard approach to solving

CBS problems involves treating search as a kind of graph reachability problem in which a graph

constructed over the types of library functions (henceforth type graph) is explored to find reachable

paths between arguments and return types [11, 16, 22].

Figure 2a depicts this idea. We show the query arguments’ types as source nodes and the required

goal type ([a], [a]) as the target node. Edges connect “producers” and “consumers” of a type. We have

replicated the nodes for some of the types like int, and [a] for the clarity of presentation. The figure
shows multiple possible paths within the graph using library functions as intermediate transition

nodes. Paths are color-coded, each representing a distinct candidate solution that leads from an

input argument (e.g., x, y or z) to the target. For instance, the black solid edges represent the first

solution shown in Figure 1(c). Similarly, the green paths represent the solution splitAt x (take y z).
The pink path represents the solution splitAt y (drop (incr x)) z.

Dashed edges show other feasible paths in the graph, not all of which lead to a complete solution.

Note that many paths have cycles and can thus represent a set of potential solutions. In this example,

since there are multiple paths that lead to the target, a synthesis tool can easily find one and return

it as a solution. Indeed, when tested with two state-of-the-art type-guided CBS tools [16] and [22],

a correct solution was generated in less than 5 seconds.

Type-based CBS on refined queries. Now, consider a slight variation of the query that refines the

desired solution by also requiring that in the returned pair, (i) the size of the first list is less than or

equal to the first argument and (ii) the size of the second list is less than or equal to the original list

length minus the second argument. One way to express this query is through the use of method

predicates or type qualifiers like len, fst, snd, etc. to capture properties such as length of the list, first
and second projections of a tuple, etc. The query represented in this way is given as the commented

signature in Figure 1(b).

, Vol. 1, No. 1, Article . Publication date: August 2025.

4 Anonymous

(a) A part of the library

(*take : (x : nat) -> (xs : [a]) ->
{v : [a] | len (v) ≤ x ∨ len (v) = 0}*)
val take : int -> [a] -> [a]

(*splitAt : (x : nat) -> (xs : [a]) ->
{v : (f : [a], s : [a]) | len (f) ≤ x ∧
(len (s) ≤ len (xs) - x)}*)
val splitAt : int -> [a] -> ([a],[a])

(*incr : (x : nat) -> {v:nat | x = x + 1}*)
val incr : int -> int

(*decr : (x : nat) -> {v:int | x = x - 1}*)
val decr : int -> int

(*fst : (x : ([a], [a])) ->
{v : [a] | v = fst (x)}*)
val fst : ([a], [a]) -> [a]

(*snd : (x : ([a], [a])) ->
{v : [a] | v = snd (x)}*)
val snd : ([a], [a]) -> [a]

(*flatten : (ts : a tree) -> {v : [a] |
elems(v)=elems(ts)}*)
val flatten : a tree -> [a]

(*parse : {xs : [a] | even_len(xs)} ->
{v : a tree | elems(v)=elems(xs)}*)
val parse : [a] -> a tree

(*clear : (xs : [a]) -> {v: [a] | len(v) = 0}*)
val clear : [a] -> [a]

(*drop : (x : nat) -> (xs : [a]) ->
{v : [a] | len (v) ≤ len (xs) - x}}*)
val drop : int -> [a] -> [a]

(*rev : (xs : [a]) -> {v : [a] | len(v)=len(xs) ∧
∀ u, w. ord (u, w, xs) => ord (w, u, v)}*)
val rev : [a] -> [a]

(b) A functional query type
(*goal : (x:nat)
-> (y : nat) -> (z : [a])
-> { v : (f : [a], s : [a]) | len (f) ≤ x
∧ (len (s) ≤ len (z) - y}*)
goal : int -> int -> [a] -> ([a], [a])

(c) A few correct solutions
(*fun x y z ->
((take x

(fst (splitAt y z))),
snd (splitAt y z))*)
fun x y z -> splitAt y (drop x z)
fun x y z -> splitAt x (take y z)
. . .

Fig. 1. Motivating Example.

(a) Types graph for the original example. (b) Types graph for the refined example.

Fig. 2. Paths in the library for the original and refined query. We show multiple nodes for a type for ease of
understanding.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 5

Traditional enumerative exploration for this significantly more constrained query is unlikely

to be successful for two fairly apparent reasons. First, the solution space, which was quite dense

earlier, reflecting the fact that most paths chosen by the synthesizer for exploration would reach

the target is now very sparse. Figure 2b shows the new type graph for this refined query. Notice

that most of the earlier solutions shown in different colors are now invalid and greyed-out. Only

the paths in solid back represent a feasible solution. The corresponding correct term is given in the

comment in Figure 1(c). Second, the (base) type specifications associated with the libraries are too

weak to meaningfully guide the synthesizer toward these sparse solutions or to filter out incorrect

solutions. In particular, simple types are incapable of differentiating the correct (black) path from

other previously-seen invalidated paths.

Exploration over an augmented search space. What we require is the ability to add additional

structure to the graph beyond just the simple type signature that we currently have, to allow

infeasible paths to be detected and pruned, and semantically-equivalent paths to be identified.

Unfortunately, incorporating such additions comes at a cost both in terms of graph size and

search complexity. To illustrate the issue with the former, note that a single type node int in the

original graph may now expand into many nodes when qualified with semantic information that

capture more refined properties, e.g., positive int, negative int, int less than v, etc. In fact, this set is

unbounded in general. The issue with the latter directly impacts how the synthesizer is engineered.

Existing techniques [11, 16, 22] search over a pre-built, fully expanded type graph of some size

for the complete library coupled with a pruning mechanism over this graph. However, building

such graphs in the presence of refined semantic information raises obvious scalability concerns. To

address these issues requires a new graph representation that can concisely represent the space

terms with refined specifications and a new search procedure tailored to operate over this new

representation.

2.1 Approach

2.1.1 Synthesis Problem over Refinement Typed Libraries. A component-based synthesis problem

over a refinement-type annotated library can be thus defined formally as follows:

Synthesis Problem. Given a type environment Γ that relates library functions 𝑓𝑖 = 𝜆(𝑥𝑖, 𝑗).𝑒𝑓𝑖
with their refinement types 𝑓𝑖 : (𝑥𝑖, 𝑗 : 𝜏𝑖, 𝑗) → {𝜈 : 𝑡𝑖 | 𝜙𝑖 } ∈ Γ, and a synthesis query 𝜑 = (𝑦𝑖 : 𝜏𝑖) →
{𝜈 : 𝑡 | 𝜙}, a solution to a CBS problem seeks to synthesize an expression 𝑒 , possibly using 𝑓𝑖 , such

that Γ ⊢ 𝑒 : 𝜑 holds.

2.1.2 Compact Representation of the Search Space. A primary requirement towards solving the

above problem is to compactly represent the space of well-typed terms. There are several data

structure options that we might choose from that can serve this purpose. Version Space Algebras [?
], e-graphs [3] and Finite Tree Automata (FTA) [6] are three well-studied examples. In particular,

FTAs have been shown to be effective in representing the space of untyped programs and allowing

efficient search over them, satisfying a set of input-output examples [12]. Furthermore, extensions of

FTA with equality constraints, dubbed ECTAs [6, 22], have been shown to be a useful representation

to represent simply-typed programs.

Unfortunately, these approaches are ineffective in representing the space of programs with

refined specifications, such as those considered in our motivating example. For instance, VSA and

standard FTAs lack the ability to relate subprograms, while constrained FTAs [6, 22], which allow

syntactic equality constraints between subterms, are insufficient when logical equality/implication

constraints are required. This requirement is clearly seen in the refined variant of our motivating

, Vol. 1, No. 1, Article . Publication date: August 2025.

6 Anonymous

example where the synthesis query establishes non-trivial semantic relationships between the list

elements in the output.
1

Fig. 3. A simple QTA
for { 𝑓 (𝜙1, 𝜙2) |𝜙1, 𝜙2 ∈
FOL, 𝜙1, =⇒ 𝜙2 }

Solution: Qualified Tree Automata. To address these limitations, we

introduce a new data structure, a Qualified Tree Automata (QTA), that

allows us to capture such logical constraints. A QTA supports a richer

alphabet than other FTA variants by incorporating logical qualifiers from

decidable first-order theory fragments. While it also allows constraints

on its transitions similar to other constrained tree automata [6, 22?],
it additionally supports semantic reasoning over these constraints (e.g.,

logical entailment), rather than being limited to syntactic reasoning

using equality or dis-equality constraints.

For instance, Figure 3 presents a QTA that captures the space of terms

represented by the following sentence { 𝑓 (𝑡1, 𝑡2) | 𝑡1, 𝑡2 ∈ {𝜙1, 𝜙2, 𝜙3}
∧ 𝑡1 =⇒ 𝑡2 } where both sub-trees are constrained using a logical
entailment constraint (defined later) on the transition (l ⊨r). Here, l and
r are variables that capture a specific location in the automata and the

constraint restricts which choice of 𝑡1 and 𝑡2 are acceptable.

These formulae and the constraints on the transition together restricts

the language accepted by the QTA. In this example, the automata accepts

terms 𝑓 (𝜙2, 𝜙1) and 𝑓 (𝜙3, 𝜙1) since, in both cases, the constraint 𝜙𝑖 =⇒ 𝜙 𝑗 holds but the QTA

rejects other syntactically valid terms like 𝑓 (𝜙1, 𝜙2) and 𝑓 (𝜙1, 𝜙3).

Embedding Refinement-typed space using QTA. Unlike traditional typed-program space embed-

ding where syntactic constraints are sufficient to compare base types, the space of well-typed

refinement specifications not only use constant base types like int, char, bool, etc., but also allow

types to be qualified with logical formula (aka refinements) [?]. QTA are effective in expressing

these structures and enable a compact embedding of these type structures.

Fig. 4. A simple QTA
for binding (x : { 𝜈 : int
| 10 ≥ 𝜈 ≥ 0 })

To illustrate such an embedding, Figure 4 shows a transition in a trivial

QTA, representing a variable x having a type { 𝜈 : int | 10 ≥ 𝜈 ≥ 0 }. States

are shown as circles, and transitions as rectangles. A transition can have

zero or more incoming states, with each having a position label, shown over

incoming arrows in transitions in red. For instance, the transition (𝑞0○
type
−−−−→

x) is used to capture a standard type binding (x : 𝜏). These types can be

refined, by allowing transitions for an alphabet symbol 𝜏 (drawn from the set

of base refinement types). 𝜏 is a ternary symbol, with three incoming states

(incoming arrows from states) corresponding to the parameters, variable,
base-type and a logical formula (i.e., refinement). The states themselves have

incoming transitions, and so on. In this example, the automata rooted at 𝑞0
corresponds to the refinement type { 𝜈 : int | 10 ≥ 𝜈 ≥ 0 }.

2.1.3 Efficient Enumeration. Compactly representing the program space is

only part of the solution, however. Another significant challenge for CBS

is devising an efficient enumeration of the program space. For instance,

Figure 5 shows some possible terms, involving functions take, incr, and clear,
along with their refinement types, that a synthesizer may have to enumerate. In our setting, naïve

enumeration is not feasible due to the sparseness of the solution space. In Figure 5, for instance,

1
see supplemental material for a detailed comparison and limitation of these structures.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 7

Fig. 5. A partial set of terms in the augmented type graph for the example along with their augmented
refinement type. The curved line partitions the terms which lead to a solution (shown in green) towards the
right (top) and other explored terms which although type-correct do not lead to a solution (left). The right
bottom shows the list of terms produced by Hegel.

only a fraction of the overall space, specifically the terms on the right top of the curve in the figure,

are actually relevant to the solution. The terms on the left of the curve in Figure 5, although type

correct, are irrelevant to the result.

Furthermore, refinement type information alone is often insufficient to efficiently guide the

synthesizer to a possible solution. For example, in the figure, there is little guidance available to

determine that the terms on the left of the curve are unlikely to contribute to a solution compared to

the terms given on the right. The cost of enumerating these ineffective terms becomes problematic

as larger terms are built from them. To address the enumeration challenge, our synthesis procedure

exploits opportunities to eagerly prune infeasible as well as redundant portions of the search space

while still ensuring that the enumeration procedure is complete.

Eager equivalence reduction: This enumeration cost can be mitigated if we can somehow prune

out infeasible and redundant terms during the enumeration process. Notice in Figure 5 that many

of these terms, although syntactically different, have the same (or equivalent) refinement type.

For example, consider all the clear function calls, which are shown in blue in the lower left of the

figure. These are all distinct terms, in total (2𝑘 + 1) in number for any 𝑘 incr calls, but each has

the same type, ({ 𝜈 : [a] | 𝑙𝑒𝑛(𝜈) = 0 }). We utilize these type-equivalences to prune out all but

one of these terms. The high-level intuition is that for any given query and library, all or none of

these nodes will lead to a solution, so exploring along any one is sufficient to reach a solution if

one exists using them. For instance, all the blue terms can be replaced with a single term (clear z)
shown in the lower right portion of the figure, showing the reduced space. We might think that

such equivalences occur only between terms with overlapping structures, like all the terms in blue.

However, note that this equivalence reduction can be generalized to any arbitrary pair of terms,

e.g., see (take x z) on the left of the curve, and (fst (splitAt x z)) on the right.

, Vol. 1, No. 1, Article . Publication date: August 2025.

8 Anonymous

Similarity, rather than equivalence: Tracking precise equivalences, although useful as shown

above, allows only a marginal reduction of the augmented space. To see why, consider all the terms

in Figure 5 in the upper left corner shown in the grey and yellow colored boxes.

Fig. 6. A partially-defined QTA for our moti-
vating example. States are shown as circles,
and transitions as rectangles. Some unim-
portant states and transitions are omitted
for clarity. A transition can have zero or
more incoming states, with each having a la-
bel denoting its position, shown in red. Tran-
sitions can also have constraints over these
positions. i○ are labels used for elucidation.

Because these terms have valid refinement types, they

are candidates for enumeration by the synthesis search

procedure. However, none of these terms actually con-

tribute to the solution. Unfortunately, exact equivalence

tracking, as described earlier, is ineffective in pruning

these terms since their type annotations are all distinct.

Observe, however, that the types of these terms are re-

lated to one another under a refinement subtyping rela-

tion. For example, the refinement type for the first term

in grey (take x z), is a subtype of the refinement types of

all other grey terms. Similarly, the type of the first yellow

term is a subtype of the type of all other yellow terms.

By defining a weaker similarity relation between terms

based on the subtype relation, we can avoid exploring

possibly non-equivalent but similar terms without affect-

ing the completeness of the search procedure. The use of

a subtyping relation as a proxy for similarity allows us to

collapse, for example, all grey and yellow terms into two

representative candidates, as depicted in the bottom-right

of the figure.

Our main insight is to map the similarities and equiv-

alences between transitions in automata to the sub-

typing relation in the type system. This allows us

to use operations available on QTAs like intersection

and union to prune all but the most specific term

(i.e., term with the lowest type in the subtype order-

ing).

Irrelevant candidate elimination: Another thing to notice in the example is that many functions

in our example library, e.g., parse, flatten, etc. are irrelevant, as there are no available arguments of

the required type in the query or other library methods to invoke them. This can happen due to

typing restrictions on the arguments, for example, the parse function requires that length of the

input list to be ‘even’. Or, it can happen simply because there are no terms of the required type in

the library or the terms that have been enumerated. Pruning away such functions early on allows us

to avoid not only reducing the candidate space but potentially avoids the need to enumerate many

other larger terms built using them for example, (parse (flatten . . .)), (clear (flatten (parse . . .))),
(take x (flatten (parse . . .))), (take y (flatten (parse . . .))), etc.
However, a naïve enumeration would generate potentially many irrelevant functions and terms,

not all of which are even well-typed. Efficiently filtering these terms is likely to be infeasible, in

general, given the enumerative structure of the approach, and the cost of performing type checks,

both of which involve an SMT query. Our next insight is that we can use operations over the QTA

to prune out portions of the QTA representing such terms.

2.1.4 QTA Through Examples. We highlight some of the details of Qualified Tree Automata using

a detailed example.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 9

Consider Figure 6 that depicts a portion of the QTA for our motivating example, showing the

annotated library function rev as a transition rev (we have used labels like 1○ for elucidation),

along with its refinement type as another transition (𝜏→) (2○). Note that because this is a function

type, it has two children, one for its input argument type and another for its return type, with

location labels in and out respectively. The argument’s type is represented in the usual way, as

shown in Figure 4 (the dashed circle at 3○). Transition rev also has an outgoing edge to state 𝑞𝑓 ,

representing the set of unary functions. In general, for each 𝑛−ary function symbol, under 𝑞𝑓 , the

in and out positions shows the sub-automata modeling the argument(s) and result type for the

function.

QTAs also support polymorphic refinement types. For instance, a polymorphic list type [a]
is represented by a transition with list constructor [t] (5○) with a type parameter t and another

automata for all base type t that can be present on the incoming edge representing the constructor’s

type parameter.

A QTA also efficiently captures refinement typing semantics. For instance, transition (app)(4○)

captures the expected type application rule. It has three incoming states, 𝑞𝑓 , representing a set

of unary functions, 𝑞𝑎 , a set of possible variables (along with their types) as arguments ((x : int),
(xs : { [a] | len (𝜈) > 0}) and (ys : [a])), and 𝑞𝜏 that represent the inferred type for the application.

Application typing constraints are added as constraints to the app transition, which captures

not only equality for base types, function return types, the return type for the application term

(type.base = fun.out.base), the function input type, and the argument base type, but also allows

constraints with logical entailment ⊨ and other constraints generated through logical connec-

tives like ∧, ∨ etc. Thus, arg.ref ⊨ fun.in.ref establishes a logical entailment constraint between a

function’s formal and actual refinements.

3 PRELIMINARIES

3.1 Background: Finite Tree Automata (FTA)

A ranked alphabet (F , Arity : F ↦→ N) is a pair consisting of a set of symbols (F), and a map

that relates these symbols to their arity. In the context of CBS, these symbols are those found in

expressions, library functions provided by the synthesis problem, query arguments, and associated

types and refinements for each expression. For example, constants and variables are symbols of arity

zero, as are constructors without arguments like Nil, etc. These form a set F0. A base refinement
type is represented as a symbol 𝜏 with arity 3 as shown in in Figure 1. In general, the set of all

symbols of arity n is denoted as F𝑛 .

Definition 3.1 (Finite Tree Automata). A bottom-up finite tree automaton (FTA),A over a signature

of ranked alphabet (F , Arity : F ↦→ N is a tuple (𝑄 , 𝑄 𝑓 , F , Δ) where 𝑄 is a set of states, 𝑄 𝑓 ⊆ 𝑄 is

a set of final states and Δ is a set of transition rules of the following form : 𝑓 (𝑞1 (𝑥1), ..., 𝑞𝑛 (𝑥𝑛)) →
𝑞(𝑓 (𝑥1, ..., 𝑥𝑛)), where n ≥ 0, 𝑓 ∈ F𝑛 , 𝑞, 𝑞1, ..., 𝑞𝑛 ∈ 𝑄 , 𝑥1, ..., 𝑥𝑛 ∈ X. where X is a set of variables

(symbols with arity 0).

Example 3.2. Let the signature over which a tree automata is defined be given by a pair of

symbols F = {𝑓 , 𝑔, 𝑎} and Arity = { 𝑓 ↦→ 2, 𝑔 ↦→ 1, 𝑎 ↦→ 0}. The set of states is 𝑄 = { 𝑞𝑎, 𝑞𝑔, 𝑞𝑓 }, let

the final state be 𝑞𝑓 ∈ 𝑄 𝑓 and let Δ be given by the following transition rules:

{𝑎 → 𝑞𝑎 (𝑎) ; 𝑔(𝑞𝑎 (𝑥)) → 𝑞𝑔 (𝑔(𝑥)) ; 𝑔(𝑞𝑔 (𝑥)) → 𝑞𝑔 (𝑔(𝑥)) ; 𝑓 (𝑞𝑔 (𝑥), 𝑞𝑔 (𝑦)) → 𝑞𝑓 (𝑓 (𝑥,𝑦))}

Analogous to finite automata that accept strings over an alphabet of characters, an FTA accepts

trees, which are terms over F . In the example given above, the FTA accepts all valid trees of the

form 𝑓 (...), generated using functions 𝑓 , 𝑔 and the constant 𝑎.

, Vol. 1, No. 1, Article . Publication date: August 2025.

10 Anonymous

3.2 Synthesis Language, 𝜆qta
The target language of our synthesizer is a standard A-normalized [14] call-by-value typed 𝜆-

calculus with constructors, constants and variables, conditional expressions, and function abstrac-

tion and application.
2
To simplify the presentation, in the following, we assume all variables have

a single unique binding-site.

𝜆qta types include standard base types like int, bool etc., along with algebraic types like lists and
trees over these base types. Refinement types 𝜏 , include base refinements and arrow refinements. A
base refinement { 𝜈 : t | 𝜙 } qualifies a term of base type t with a refinement qualifier 𝜙 ∈ Φ. An
arrow refinement refines a function type, where the argument x can occur free in the return type.

Qualifiers (Φ) is a set of first-order predicate logic formulae over base-typed variables along with

method predicates (𝑄), which are user-defined, uninterpreted function symbols such as len and

ord over lists used in our motivating example. A type context Γ records term variables and library

functions 𝑔 with their types. It also records a set of propositions relevant to a specific context.

4 QUALIFIED TREE AUTOMATA

Definition 4.1 (Positions in a term). A position 𝑝 in a term 𝑡 is of the form 𝑖 . 𝑗 .𝑘𝑛, a sequence of

positive integers describing a path from the root of 𝑡 to a sub-term. This describes what symbols

are present at each position, relative to the root.

𝑝, 𝑝𝑖 , ...𝑝𝑛 ∈ Position
𝜓𝑎 ::= (Atoms)
true | false
| 𝑝 = 𝑝 (Syntactic equality)
| 𝑝 ⊨ 𝑝 (Semantic entailment)
𝜓 ∈ Ψ ::=

𝜓𝑎 | ¬𝜓
| 𝜓 ∧𝜓 | 𝜓 ∨𝜓
𝜎 ∈ 𝑆𝑐ℎ𝑒𝑚𝑎 ::=

★ | ★ = ★ | ★ ⊨ ★
Fig. 7. QTA Constraints Ψ

For easier comprehension, we give human-readable labels to

each number in a position, e.g., consider Figure 6 again. The se-

quences used in the constraints like arg.base = fun.in.base are
positions. type.ref is a synonym for position 1.3, fun.in.base
for 2.1.2, etc.

Definition 4.2 (Constraints in Qualified Tree Automata). A
QTA constraint 𝜓 ∈ Ψ is a predicate on terms in 𝜆qta . It is
defined inductively over positions and Boolean connectives,

as shown in Figure 7. A valid atomic constraint 𝜓𝑎 includes

Boolean constants like true and false, as well as syntactic equal-
ity between positions, given by 𝑝 = 𝑝 and semantic entailment
(Sem-ent) over positions, given by 𝑝 ⊨ 𝑝 . A constraint 𝜓 is ei-

ther a𝜓𝑎 or a constraint generated using Boolean connectives over other constraints. Consequently,

we can also classify atomic constraints into kinds using three constraint schemas, ★, ★ = ★ and ★ ⊨
★, respectively.

Definition 4.3 (Qualified Tree Automata). A Qualified Tree Automata, A defined over a finite

ranked alphabet F derived from 𝜆qta , is a tuple (𝑄 , F , 𝑄 𝑓 , Δ), where:

• 𝑄 is a finite set of states.

• 𝑄 𝑓 ⊆ 𝑄 is a set of final states.

• Δ ⊆ 𝑄𝑛 × F × Ψ ↦→ 𝑄 , is a set of constrained transitions. Each transition rule is of the form

𝑓 (𝑞1, 𝑞2, ...𝑞𝑛)
𝜓
↩−→𝑞, where 𝑓 ∈ F with arity 𝑛, and a set of states 𝑞1, 𝑞2, . . . 𝑞𝑛 ∈ 𝑄 and𝜓 ∈ Ψ

is a valid constraint. Here 𝑞 is the target state.

2
Details about the language and its type system are provided in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 11

J𝑞K ::=

⋃
𝑖 (J𝛿𝑖K)

where 𝛿𝑖 =

(𝑓 (𝑞𝑖1, 𝑞𝑖2,. . . ,𝑞𝑖𝑛)
𝜓
↩−→ 𝑞)

J𝛿K ::= { 𝑓 𝑡𝑖 | 𝑡𝑖 ∈ J𝑞𝑖K,𝑓 𝑡𝑖 � 𝜓 ,
𝑖 ∈ [1 . . . 𝑛] }

𝛿 = (𝑓 (𝑞1, 𝑞2,. . . ,𝑞𝑛)
𝜓
↩−→𝑞)

J𝛿⊥K := ∅

JAK ::=
⋃

𝑖 {J𝑞𝑖K | 𝑞𝑖 ∈ 𝑄 𝑓 }

Fig. 8. QTA denotation.

Language of a Qualified Tree AutomatonL (A).
The language accepted by a QTAA, is the set of all terms

in 𝜆qtawith some successful run of A. This is, in fact,

the set of all well-typed 𝜆qta terms, constructed using

the methods found in a library. Formally, we define the

language accepted by A using its denotation JAK (see
Figure 8). The denotation of a state 𝑞, J𝑞K is the set union
of the denotations of each of the transitions 𝛿𝑖 , J𝛿𝑖K, for
which 𝑞 is a target state. The denotation of a transition 𝛿

builds a set of all terms, using the symbol at the current

transition (𝑓) and terms in the denotation of states incom-

ing in 𝛿 , filtering all terms that do not satisfy the transi-

tion constraint𝜓 . Symbols 𝑓 ∈ F include all 𝜆qta terms

including variables (x), constants (c), conditional expres-
sions (if b then e else e), function abstractions and applications, and types (𝜏). Intuitively, the

satisfaction of a constraint by a term 𝑡 � 𝜓 maps syntactic equality constraints to equality of

symbols and semantic entailment between qualifiers to logical entailment of FOL formulas. We

also have a special bottom transition 𝛿⊥, whose denotation is an empty set. Since a QTA can have

multiple final states given by the set 𝑄 𝑓 , the language of a QTA is the union of the denotation for

all its final states.

5 SYNTHESIS USING QUALIFIED TREE AUTOMATA
5.1 Component-based synthesis using QTA

To formalize synthesis using QTAs, we revise our earlier definition. First, we define a consistency

relation between a QTA A and a typing environment Γ.

Definition 5.1 (Consistency between a QTA A and Type Environment Γ). A type environment

Γ is consistent with a QTA A = (𝑄 , F , 𝑄 𝑓 , Δ) iff ∀𝑒 . Γ(𝑒) 3 = 𝜏 ⇐⇒ ∃A′ such that A′ is a
sub-automaton of A and 𝑒 ∈ JA′K.

Revised Synthesis Problem: Given a type environment Γ that relates library functions

𝑓𝑖 = 𝜆(𝑥𝑖, 𝑗).𝑒𝑓𝑖 with their refinement types 𝑓𝑖 : (𝑥𝑖, 𝑗 : 𝜏𝑖, 𝑗) → {𝜈 : 𝑡𝑖 | 𝜙𝑖 } ∈ Γ, and a synthesis query

𝜑 = (𝑦𝑖 : 𝜏𝑖) → {𝜈 : 𝑡 | 𝜙}, a solution to a CBS problem is a QTA A, such that forall all 𝑒 ∈ JAK,
Γ ⊢ 𝑒 : 𝜑 and Γ is consistent with A.

5.2 Synthesis Algorithm

The main synthesis algorithm, QTASynthesize is shown in Algorithm 1. It takes as input an

alphabet F , which includes symbols from 𝜆qta and a library of functions with refinement type

annotations; a synthesis query specification 𝜑 , and a bound on the size of the terms 𝑘 to synthesize.

The algorithmworks in two phases: (1) an exploration phase adds states and transitions, expanding
the automata. The resulting QTA is then pruned/reduced by (2) a reduction phase. The algorithm

also keeps track of similar but not yet reduced transitions through an equivalence set E, lifting the

subtyping relation to an ordering relation between transitions in QTA.

The output of the algorithm is a pair consisting of (i) a QTA, Amin for the synthesis query

based on F and the typing semantics of 𝜆qta , such that the language of the QTA are solutions to

3
Expression 𝑒 and variable binding 𝑒 are used interchangeably.

, Vol. 1, No. 1, Article . Publication date: August 2025.

12 Anonymous

the synthesis problem, and (ii) a set of solution terms in 𝜆qta , possibly using F that satisfies the

query specification, The algorithm returns a failure value (⊥) if it cannot find a solution within the

given max-depth 𝑘 .

QTASynthesize(⟨F , 𝜑 = (xi : 𝜏𝑖) → {v : t|𝜙}, 𝑘⟩)
// Initialize

(1) A0←WF (F , A⊥); E ← ∅
// Check solution in Initial A0

(2) if �̂� = NEmpty (A0) then
(3) return (A0,

⋃
𝑞∈�̂�JA𝑞K)

// Iteratively explore-reduce-check

(4) return Enumerate (A0, 𝜑 , 𝑘)

Enumerate(⟨F ,A, 𝜑 = (xi : 𝜏𝑖) → {v : t|𝜙}, 𝑘⟩)
(5) if depth (A) < k then
(6) A ← Transition (F , A);

(7) A ← Prune (A);

(8) E ← Similarity (A, E);
(9) (Amin, E)←Minimize (A, E);

(10) if �̂� = NEmpty (Amin) then
(11) return (Amin,

⋃
𝑞∈�̂�JA𝑞K)

(12) Enumerate (Amin, 𝜑 , 𝑘)
else

(13) return ⊥
NEmptyQTA(⟨A⟩)
(14) �̂� ← {𝑞𝑓 | 𝑞𝑓 ∈ 𝑄 𝑓 , J𝑞𝑓 K ≠ ∅ }

(15) return �̂�

Algorithm 1:Main Synthesis Algorithm.

The algorithm begins (line 1) by initializing

E to an empty set and constructing an initial

QTA covering all terms of size one using a call

to a well-formedness function (WF), passing it

the library F and an empty automataA⊥. This
function is a deterministic implementation of

the rules rules shown in Figure 9. These rules

formalize when to add transitions correspond-

ing to well-formed primitive types (wf-prim),

predicates (wf-pred), and variables (wf-var),

in the component library. They also define how

to add states and transitions for each of the

query arguments x𝑖 and their types 𝜏𝑖 . Addi-

tionally, there is also a rule Q-goal suggest-

ing how to add a transition (and correspond-

ing states) for the query specification. Conse-

quently, initialization adds states and leaf tran-

sitions for the arguments in the synthesis query

𝜑 , library functions, base types, etc. Initializa-

tion also adds a final state and transition with

the top-level constraint corresponding to the

given query 𝜑 . This generates the initial QTA

A0.

Next, at line 2, the algorithm checks if the

language of the initial QTA A0 is non-empty

using another routineNEmpty (lines 14 and 15),

that collects all final states with a non-empty language using the earlier defined J.K function.
If this set is non-empty, the algorithm extracts the set of solution terms in the language of A0

using the QTA denotation J K (Figure 8), finally returning (A0, JA0K) (line 3). Otherwise (line 4),
it calls procedure Enumerate (lines 5-13) that is the main explore-reduce-check loop where the

construction (and reduction) of the QTA occurs. This procedure returns ⊥, representing synthesis

failure, if it is invoked when the max depth of the QTA has already been reached.

However, if the depth of A is less than the max-depth 𝑘 , enumerate enters the exploration

phase and expands A by adding new transitions, using a procedure Transition (line 6). This is a

deterministic implementation of the transition rules in Figure 9 for capturing typing semantics for

the 𝜆qta . These new transitions update the QTA thus adding larger terms.

At this point, Enumerate does not further expand A; instead, the algorithm enters a reduction
phase. It first reduces the size of A, using the Prune function (line 7); we present its definition in

Section 6. Next, the procedure performs similarity checking and reduction using the Similarity

(line 8) and Minimize (line 9) functions. Similarity is a deterministic implementation of the rules

given in Figure 10. It returns an updated similarity set E carrying all the similarity information

in the structures. Minimize (line 9) is an implementation of the minimization inference rules

(M-Trans) and (M-QTA) given in Figure 10. We describe these rules in the next section. In the

process, the new QTA may drop certain states and transitions that are logically equivalent to more

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 13

specific states or may merge several transitions. The result is a minimized automata Amin. Finally,
Enumerate again checks (line 10) if the language of QTA Amin is non-empty and returns the

QTA along with the set of the extracted terms in L (Amin) (line 11) using the denotation J.KAmin.
Otherwise, the algorithm iterates again on the minimized automata entering the exploration phase.

5.3 QTA Construction

Well-formedness F,A ⊢wf 𝑓 ∈ F(𝑞𝑖)
𝜓
↩−→𝑞

wf-prim

t ∈ TF 𝑞t ∉ 𝑄

F,A ⊢wf t()↩−→𝑞t
wf-pred

𝜙 ∈ ΦF 𝑞𝜙 ∉ 𝑄

F,A ⊢wf 𝜙↩−→𝑞𝜙

wf-var

𝑥 ∈ VarsF 𝑞𝑥 ∉ 𝑄

F,A ⊢wf 𝑥↩−→𝑞𝑥

wf-base

(𝜏 ≡ {𝑥 : 𝑡 | 𝜙 }) ∈ 𝜏F 𝑞𝜏 ∉ 𝑄

F,A ⊢wf 𝜏 (𝑞𝑥 , 𝑞𝑡 , 𝑞𝜙)↩−→𝑞𝜏
wf-arrow

(𝜏→ ≡ 𝜏𝑖 → 𝜏 𝑗) ∈ 𝜏F
𝜏𝑖 , 𝜏 𝑗 ∈ 𝜏F 𝑞𝜏→ ∉ 𝑄

F,A ⊢wf 𝜏𝜏→ (𝑞𝜏𝑖 , 𝑞𝜏 𝑗)↩−→𝑞𝜏→

wf-t-abs

𝑞𝛼 , 𝑞𝜏 ∈ 𝑄
𝜓 = 𝑞tabs ▶ tvar.type = 𝑞tabs ▶ type.base

F,A ⊢wf tabs(𝑞𝛼 , 𝑞𝜏)
𝜓
↩−→𝑞tabs

Q-goal

𝜑 = (xi : 𝜏𝑖) → 𝜏 𝑞term𝑘
, 𝑞𝜏 ∈ 𝑄

𝑞goal ∈ 𝑄 𝑓

𝜓 = SubType(𝑞term𝑘
▶ type, 𝑞goal ▶ type)

F,A ⊢wf goal(𝑞𝜏 , 𝑞term𝑘
)
𝜓
↩−→𝑞goal

Transitions F,A ⊢ 𝑓 ∈ F(𝑞𝑖)
𝜓
↩−→𝑞

e-var

𝑥 : 𝜏 ∈ F 𝑞𝑥 ∉ 𝑄

F,A ⊢ 𝑥 (𝑞𝜏)↩−→𝑞𝑥
e-const

⊢ 𝑐 : 𝜏 ∈ F 𝑞𝑐 ∉ 𝑄

F,A ⊢ 𝑐 (𝑞𝜏)↩−→𝑞𝑐

e-app

𝑞𝑓 , 𝑞𝑎 ∈ 𝑄 𝜏 (𝑞𝑖)↩−→𝑞𝜏 ∈ Δ
𝜓 = SubType(𝑞𝑓 ▶ out, 𝑞app ▶ type)∧

SubType(𝑞a ▶ type, 𝑞𝑓 ▶ in)

F,A ⊢ app (𝑞𝜏 , 𝑞𝑓 , 𝑞𝑎)
𝜓
↩−→𝑞app

e-if

𝑞𝑏 , 𝑞𝑡 , 𝑞𝑓 ∈ 𝑄 𝜏 (𝑞𝑖)↩−→𝑞𝜏 ∈ Δ
𝜓 = ((𝑞𝑏 ▶ ref) ∧ SubType(𝑞𝑡 ▶ type, 𝑞if ▶ type))∧
(¬(𝑞𝑏 ▶ ref) ∧ SubType(𝑞𝑓 ▶ type, 𝑞if ▶ type))

F,A ⊢ if (𝑞𝜏 , 𝑞𝑏 , 𝑞𝑡 , 𝑞𝑓)
𝜓
↩−→𝑞if

SubType(𝛿𝑖 , 𝛿 𝑗) =



(𝜏𝑖 (𝑞𝑖)
𝜓𝑖
↩−→𝑞𝜏𝑖 , 𝜏 𝑗 (𝑞 𝑗)

𝜓 𝑗
↩−→𝑞𝜏 𝑗) i.type.t = j.type.t

∧ i.type.ref ⊨ j.type.ref

(𝜏→𝑖
(𝑞𝑖)

𝜓𝑖
↩−→𝑞𝜏→𝑖

, 𝜏→𝑗
(𝑞 𝑗)

𝜓 𝑗
↩−→𝑞𝜏→𝑗

) SubType(𝛿 𝑗 ▶ in, 𝛿𝑖 ▶ in)
∧ SubType(𝛿𝑖 ▶ out, 𝛿 𝑗 ▶ out)

(_, _) true

(1)

Fig. 9. Selected rules for constructing transitions Δ, basis for WF and Transition.

The transitions Δ for a QTA A are constructed using theWell-formedness and Transitions
judgments given in Figure 9. The latter judgment holds if, given library F and automata A, a

new n-ary transition can be added to A corresponding to an n-ary symbol 𝑓 ∈ F , with 𝑞1, 𝑞2, ...𝑞𝑛
being the incoming states in the transition and 𝑞 being the target state, such that𝜓 captures the

typing constraints for the valid terms in the language of the transition J.K

, Vol. 1, No. 1, Article . Publication date: August 2025.

14 Anonymous

5.3.1 Well-formedness Rules. Given the current alphabet F , which contains the component-library

and the query 𝜑 , a current QTA A; and the well-formedness typing semantics in 𝜆qta (represented

using ⊢wf), judgments of the form F ,A ⊢wf 𝑓 ∈ F (𝑞𝑖)
𝜓
↩−→𝑞 direct how we can add a new transition

to A. These rules capture the conditions under which (leaf) transitions can be added to well-

formed base types t, predicates 𝜙 , variables, base and arrow refinement types, and polymorphic

types. These rules closely follow the well-formedness typing rules for 𝜆qta .
Rule wf-prim adds transitions corresponding to each primitive type t in the library. For each

such t, the rules creates a new state 𝑞t and adds a nullary transition with symbol t and 𝑞t as
the target state. Rule wf-pred similarly adds leaf transitions for refinement formula 𝜙 in some

annotation in F or in the query. Rule wf-var, adds transition for variables in the library or query.

Rule wf-base, picks each well-formed base refinement type 𝜏 in the library or query annotation

and creates a new state (𝑞𝜏) for this type and adds a transition for 𝜏 with three incoming states,

corresponding to the three elements in a base refinement { 𝑥 : 𝑡 | 𝜙 }. Namely, 𝑞𝑥 for the bound-

variable 𝑥 , 𝑞𝑡 for the base-type 𝑡 and 𝑞𝜙 for the refinement formula 𝜙 . Note that the rule builds

these states constructed by earlier rules wf-var, wf-prim and wf-pred as defined above.

Rule wf-arrow generates similar transitions for each arrow refinement type, with a symbol 𝜏→
and two incoming states for the argument-type and the result-type for the arrow. Rule Q-goal

adds a special goal transition and a final state 𝑞goal for the given query and sub-automata rooted at

𝑞term𝑘
for all terms of size 𝑘 . The state 𝑞𝜏 captures the return type for 𝜑 . The transition constraint

𝜓 captures the standard subtype check between the type of the synthesized terms and the qoal’s

annotated return type, using a constrain generation function SubType.

Our extended 𝜆qta and typing semantics also include type and refinement abstractions, allowing
parametric polymorphism in the refinement types setting [30?]. Consequently, the above rules also
extend naturally to these abstractions and their corresponding type and refinement applications.

To illustrate, RuleWF-T-ABS gives the rule to construct a transition representing a polymorphic

type ∀𝛼.𝜏 , using the well-formedness semantics for type abstractions. Given two states, 𝑞𝛼 for the

type-variable and 𝑞𝜏 for the type with 𝛼 occurring free, it constructs a transition representing the

polymorphic type ∀𝛼.𝜏 .4

5.3.2 Expression Transition Rules. Transition judgments are similar in structure to the Well-

formedness judgments, but simulate the refinement type judgments for the expressions in the

𝜆qta . These rules say how to add transitions corresponding to 𝜆qta expressions along with their

types. Each n-ary expression transition has n+1 incoming states, with the state at the position zero

capturing the sub-automata for the possible types of the expression.

Rule E-var and E-const adds transitions for variables and constants in the library along with

their types. Note that E-var rule will add transitions for both scalars as well as variables bound to

functions in the library, consequently, the type 𝜏 in Rule E-var will be modeled either as a base

refinement (via wf-base) or an arrow refinement (via wf-arrow).

Rule (E-app) adds transitions related to function applications. It assumes the states 𝑞𝑓 and 𝑞𝑎 are

already present for the function 𝑓 and argument 𝑎. It first constructs a transition corresponding to

the type (𝜏) of the function-application using the well-formedness judgments with 𝑞𝜏 as the target

state. The inferred transition uses app as the symbol, with three incoming states, corresponding to

the resulting type (𝑞𝜏), function 𝑞𝑓 and argument 𝑞𝑎 . The point to note in this rule is that constraints

𝜓 added to the transition, relating the three sub-automata rooted at these states. These constraints

use an auxiliary function SubType (Equation 1), which given two transitions, returns constraints

sufficient to capture the subtype relation between their types. For example,𝜓 in E-app captures

4
Please see the supplemental material for a complete description.

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 15

two main relations. The first is a subtyping constraint between a function’s formal argument and

the actual expression passed as the argument (𝑞a ▶ type, 𝑞𝑓 ▶ in). This specifies that given a state

𝑞a, (𝑞a ▶ type) represents the transition at position type from 𝑞a. The second subtype relation

is between the function’s result type and the type of the expression (𝑞𝑓 ▶ out, 𝑞app ▶ type). The
details of the auxiliary operation SubType are given in Equation 1. Note that the E-App rule is

sufficiently general to allow synthesis to support partial (i.e., higher-order) function applications.

Rule E-if builds a transition for a conditional expression using the sub-automata for the Boolean

condition (rooted at state 𝑞𝑏), and the true and the false branches, rooted resp. at 𝑞𝑡 and 𝑞𝑓 . The

constraints on the transition captures the standard refinement typing semantics for conditional

expressions. The true branch adds the constraints that the Boolean condition is true while the false

branch specifies the negation.
5

6 QTA REDUCTIONS

6.1 Prune

The QTA formulation in Section 3 accepts only well-typed terms from the 𝜆qta . However, we can
make the synthesis procedure more efficient by eagerly reducing portions of the automata (i.e.

sub-automata) which are irrelevant to the construction of any solution.

The inference rules for pruning irrelevant code, which form the basis for the Prune routine

in Algorithm 1, are given as judgments in Figure 10. These rules have two judgment forms, A ⊢
Δ ⇝ Δ′ takes the current transition set and reduces it to a pruned set. The other judgment

form, A ⊢ 𝛿 ⇝𝜓𝑎 𝛿 ′ reduces an individual transition by an atomic constraint𝜓𝑎 giving a pruned

transition.

The p-trans rule takes a transition 𝛿 with transition constraint 𝜓 . The rule assumes 𝜓 as a

conjunction of atomic constraints𝜓 𝑗 and reduces the chosen transition 𝛿 by each𝜓 𝑗 (defined next)

and updates the original 𝛿 ∈ Δ with the reduced 𝛿r.
Reduction of a transition by an atomic constraint is defined in the remaining two rules, matching

the shape of the atomic constraint. Rule p-syn-eq handles syntactic equality constraints over

positions 𝑝1 and 𝑝2. It performs a syntactic intersection [6, 22] over the two transitions at these

position. Syntactic intersection (⊓Syntax) is a standard tree intersection operation. Intuitively,

it compares the two transitions for syntactic equality of transition symbols while recursively

intersecting each incoming state in the transition.

Rule p-sym-ent handles the alternate case, when𝜓 𝑗 expresses a semantic entailment. When the

constraint is 𝑝1 ⊨ 𝑝2, standard equality based intersection is ineffective, as the formulas at positions

𝑝1 and 𝑝2 cannot be compared syntactically. Thus, we define a semantic intersection operation

⊓Semantics, which only compares transitions having refinement qualifiers and compares them

logically, checking the logical entailment of the formula at position 𝑝2 by the formula at position

𝑝1, keeping the transition at lower position 𝑝1. Intuitively, this operation compares transitions

modeling refinements of two types, and keeps the sub-type transition if the logical constraint hold,

i.e. 𝛿r = 𝛿 ▶ 𝑝1, if the formula at 𝛿 ▶ 𝑝2 implies the formula at 𝛿 ▶ 𝑝1. Otherwise, it returns a

special bottom transition, i.e. 𝛿r = 𝛿⊥. The operation also runs a normalization routine and trims all

⊥ transitions. Combined, these rules return a Δ with transitions reduced to 𝛿⊥, forming the basis

of the Prune procedure in QTASynthesize.

5
The complete set of typing judgments, construction rules and example showing the QTA construction using these rules

are provided in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: August 2025.

16 Anonymous

Pruning A ⊢ Δ⇝ Δ′ | A ⊢ 𝛿 ⇝𝜓𝑎 𝛿 ′

p-trans

𝛿 ∈ Δ ≡ 𝑓𝑖 (𝑞𝑖1, 𝑞𝑖2, ...𝑞𝑖𝑛)
𝜓
↩−→𝑞

𝜓 ≡ ∧
𝑗 ∈ [1...𝑚] 𝜓𝑖

A ⊢ 𝛿 ⇝𝜓 𝑗 𝛿r
A ⊢ Δ⇝ Δ[𝛿r/𝛿]

𝜓 𝑗 ≡ 𝑝1 = 𝑝2
𝛿r = ⊓Syntax (𝛿 ▶ 𝑝1, 𝛿 ▶ 𝑝2)

A ⊢ 𝛿 ⇝𝜓 𝑗 𝛿r
p-syn-eq

𝜓 𝑗 ≡ 𝑝1 ⊨ 𝑝2
𝛿r = ⊓Semantics (𝛿 ▶ 𝑝1, 𝛿 ▶ 𝑝2)

A ⊢ 𝛿 ⇝𝜓 𝑗 𝛿r
p-sem-ent

Similarity A ⊢sim 𝛿𝑖 ≲ 𝛿 𝑗 | A ⊢ E ⇝ E′

s-trans

𝜓<: = SubType(𝛿𝑖 ▶ type, 𝛿 𝑗 ▶ type)
𝛿𝑖 ▶ type ⊓𝜓<: 𝛿 𝑗 ▶ type ≠ 𝛿⊥

A ⊢sim 𝛿𝑖 ≲ 𝛿 𝑗
s-eq

(𝛿𝑖 , 𝛿 𝑗) ∉ E
A ⊢sim 𝛿𝑖 ≲ 𝛿 𝑗

A ⊢ E ⇝ E ∪ { (𝛿𝑖 , 𝛿 𝑗) }

Minimization (A, E) ⊢ Δ⇝ Δ′ | ⊢ (A, E) ⇝ (A′, E′)

m-trans

𝛿𝑖 , 𝛿 𝑗 ∈ Δ (𝛿𝑖 , 𝛿 𝑗) ∈ E

𝛿𝑖 ≡ 𝑓 (𝑞1, 𝑞2, . . . 𝑞 𝑗 . . . 𝑞𝑛)
𝜓𝑖
↩−→𝑞𝑖

𝛿 𝑗 ≡ 𝑓 ′ (𝑞′
1
, 𝑞′

2
, . . . 𝑞′𝑚)

𝜓 𝑗
↩−→𝑞 𝑗

Δ′ =
⋃

𝑘 {𝛿𝑘 [𝑞 𝑗 ↦→ 𝑞𝑖]
| 𝛿𝑘 = ˆ𝑓 (𝑞1, qj, . . . ˆ𝑞𝑚) ↩→ 𝑞𝑘 }

(A, E) ⊢ Δ⇝ (Δ ∪ Δ′) \ {𝛿 𝑗 }

A ≡ (𝑄, F,𝑄 𝑓 ,Δ) (A, E) ⊢ Δ⇝★ Δ′

⊢ (A, E) ⇝ ((𝑄, F,𝑄 𝑓 ,Δ
′),∅)

m-qta

Fig. 10. Selective rules Similarity inference and QTA Minimization.

6.2 Similarity and Minimize

The similarity inference rules are given in the Similarity judgments in Figure 10. The S-trans

rules suggests when two transitions are similar based on their associated type sub-automata.

The crux of the definition rests on the constraint 𝜓<: = (SubType(𝛿𝑖 ▶ type, 𝛿 𝑗 ▶ type). This
constraint checks if the transition at position type for 𝛿𝑖 and type for 𝛿 𝑗 are related by the standard

subtype checks in a 𝜆qta typing semantics. Rule (S-eq) picks transition pairs from A not in E and

checks their similarity, adding the pair to the similarity set E if the similarity relation holds.

Similarity Reduction: The above definition of similarity between transitions gives us an algorith-

mic way to minimize a QTA, reducing all similar transitions but one. The Minimization rules in

Figure 10 define how to minimize a given QTA using the similarity relation between transitions.

The rules have two judgment forms; (A, E) ⊢ Δ ⇝ Δ′, which takes the original QTA A along

with the similarity relation E and translates the original transition set to a new one, dropping the

transition(s) with the super-type while keeping the subtype transitions; this is represented in Rule

M-trans. It also updates the transition set Δ such that whenever the state 𝑞 𝑗 from the supertype

transition, 𝛿 𝑗 flows in originally, in A, the rule now adds and incoming edge from 𝑞𝑖 .

The second judgment defines how the complete automata is minimized and the similarity set is

updated on minimization. This is shown in theM-qta rule, which creates a minimized transition

set Δ′ using the transitive closure of the transition update rules (Δ ↩→ Δ′) defined by (↩→★
). The

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 17

updated QTA symbol set F remains the same as the original. Finally, the updated similarity set

becomes empty since all similar states are either deleted or merged with other states.

Note that the equivalence of terms (and hence sub-automata) is a stronger property than similarity.

Consequently, similarity inference and reduction also reduces any equivalent sub-automata, thus

allowing us to prune away both kind of redundant terms (see Figure 5) while giving an efficient

enumeration in a reduced search space.

7 SOUNDNESS AND COMPLETENESS

For a given upper bound k on the size of programs being synthesized, the QTASynthesize al-

gorithm is both sound and complete assuming the validity of each library function against their

specifications.
6

Theorem 7.1 (Soundness). Given a type environment Γ that relates library functions 𝑓𝑖 = 𝜆(𝑥𝑖, 𝑗).𝑒𝑓𝑖
with their refinement types 𝑓𝑖 : (𝑥𝑖, 𝑗 : 𝜏𝑖, 𝑗) → {𝜈 : 𝑡𝑖 | 𝜙𝑖 } ∈ Γ, and a synthesis query 𝜑 = (𝑦𝑖 : 𝜏𝑖) →
{𝜈 : 𝑡 | 𝜙}, if QTASynthesize (Γ, 𝜑, k) =(Amin, Terms = {e | e ∈ JAminK }), then ∀𝑒 ∈ Terms, Γ ⊢
𝑒 : 𝜑 , where Γ is consistent with Amin.

Theorem 7.2 (Completeness). Given a type environment Γ that relates library functions 𝑓𝑖 =
𝜆(𝑥𝑖, 𝑗).𝑒𝑓𝑖 with their refinement types 𝑓𝑖 : (𝑥𝑖, 𝑗 : 𝜏𝑖, 𝑗) → {𝜈 : 𝑡𝑖 | 𝜙𝑖 } ∈ Γ, and a synthesis query
𝜑 = (𝑦𝑖 : 𝜏𝑖) → {𝜈 : 𝑡 | 𝜙}, if QTASynthesize (Γ, 𝜑, k), = ⊥, then � a term 𝑒 ∈ JAcompleteK
containing fewer than 𝑘 + 1 library function calls, such that Γ ⊢ 𝑒 : 𝜑 and Γ is consistent with
Acomplete. Where Acomplete is the complete QTA of size 𝑘 , for the given Γ, generated without any
reduction.

8 SYNTHESIS DETAILS AND IMPLEMENTATION

In the QTA construction and pruning rules and the QTASynthesize algorithm above, for ease of

illustration, we have abstracted away several details about how we maintain variable scoping, infer

types for transitions, and do efficient term extraction. Below, we discuss some of these in detail.

For illustration, we will consider a library F = [f : (n : int)→ (l : { v : [a] | len (v) > 0 })→ { v : [a] |

len(v) = len(l) }; xs : { v : [int] | len (v) = 1} ; ys : [char]; g : (l : [char])→ [char]]. Figure 11 shows a

portion of minimized QTA for terms of size two with transition app for this library.

8.1 Variable Scoping and Typing Environment in QTA

The details of variable scoping during QTA construction and pruning are important to understand

how enumeration works with refinement types in a QTA. To simplify scoping decisions and manage

the typing environment, we made several design choices. First, we require terms in our synthesis

language 𝜆qta to be in A-normal form, and to have a unique binding variable t𝑖 for each application

and conditional term. We also refactor each library function specification, alpha-renaming all

bounded variables in the arguments with unique argument(s). This allows us to avoid unwanted

variable capture across library functions without explicitly keeping track of scope information

about bound and free variables.

Additionally, to build the typing environment, each term binding variable in ANF is ascribed a

set of possible types that can be associated with it. To implement this structurally in QTA, we extend

each n-ary expression transition (e.g.app transition) in the QTA, to (n+1) arity with an additional

incoming edge for the type of the resulting expression (e.g., function application term). See, for exam-

ple, the arrows with label type in Figure 11 for the app transition that has an edge (𝑞𝜏 → app),𝑞𝜏 to

6
Proofs can be found in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: August 2025.

18 Anonymous

represent a set of valid types that can be ascribed to the application term (described next). Finally, we

build a global typing environment mapping each expression type (annotated and inferred) with the

binding variable using a typing environment construction function. This function is derived from a

relation relating QTAs to typing environments; details are provided in the supplemental material.

Fig. 11. Partial QTA for the example library,
variables renamed to avoid variable capture.

8.2 Resolving Refinement

Predicates for type Edges in Transitions

QTA construction and pruning also rely on inferring a set

of feasible types for each transition. For instance see the

incoming state (𝑞𝜏 → app) in the example. The possible

set of types is shown using a transition ({𝜈 : 𝛼 | 𝜙1} →
𝑞𝜏○).

Inferring this type set precisely requires inferring the

base type (shown by a type variable 𝛼 in the example)

and the refinement predicate (here 𝜙1). The former is

straightforward, given the transition constraints, using

syntactic comparison between terms at constrained lo-

cation, e.g., the given constraint relating function and

argument type structure allows us to infer in this case

that the type of the application term is [𝑡], a list over

some base type 𝑡 . Inferring the refinement predicates is

more convoluted and needs some elucidation. We assign

abstract predicates to each missing refinement, e.g. 𝜙1

in the example, for the refinement predicate. The logical

constraint over transitions allows us to maintain logical

implication relations over these abstract predicates with

other similarly constrained predicates.

For instance, when inferring the type for the term let t1 = f m x (under a typing environment

constructed over the refactored QTA as explained earlier), we have two implication constraints (i)

len (v1) = lenl =⇒ 𝜙1 and (ii) len(xs) = 1 =⇒ true. When solving for 𝜙1, in the context, we can

unify l with xs, and with v1 with 𝑡1 to precisely ascribe/infer 𝜙1 as len (t1) = len(xs) ∧ len(xs) = 1

which reduces to len (t1) = 1. This satisfies both constraints (i) and (ii). We can generally have a set

of such ascribed types for cases with multiple functions and arguments in an app transition.

8.3 QTA Term Extraction

Once a minimized QTAAmin is constructed for a given size k, library F , and the given𝜙 , Algorithm
QTASynthesize checks for the non-emptiness of the QTA and if successful, returns the QTA and

the terms in the language of the QTA. The QTA denotation function call, in the Algorithm, is defined

in Figure 8 and gives a naive term extraction strategy where: a) we enumerate all terms based on

underlying unconstrained tree-automata, b) filter out those terms which violate the constraints

of each transition. Unfortunately, even on minimized QTA, this will face a challenge in scaling to

interesting scenarios. To address this, our implementation uses a more clever strategy employing

a hierarchical combination of; a) a lazy choice of concrete types for polymorphic type variables,

based on equality constraints [22]. This allows an efficient enumeration of valid base-typed terms.

However, these well base-typed terms may still contain ill-typed terms in the refinement-type

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 19

world. To filter out these terms: b) we have a secondary enumeration (using the denotation function)

over these valid, based-typed terms, discarding terms that do not satisfy the logical constraints.

Figure 11 shows app containing both equality (1○) and logical constraints (2○). While enumer-

ating monomorphic type for f, our strategy first uses 1○ to deduce that that the type variable t
cannot reduce to the base type bool as there are no argument under 𝑞𝑎○ of [bool]. This is shown
by a greyed out transition (bool → t○). We next enumerate the remaining terms using the J.K
function, this further filters out the choice for t to be char, as type for ys does not satisfy 2○, shown

by a corresponding greyed out transition (char → t○). This leaves only a single enumeration

choice for t as int, giving a unique monomorphic type for f.

8.4 Implementation

We have implemented these ideas in a tool (Hegel) that comprises approximately 5KLoC in OCaml.

The input to Hegel is a specification file containing a library of functions and data constructors,

along with their specifications, followed by a goal query. The specification and query languages are

type-based, using refinement types for pure functions [21], extended with support for polymorphic

type specifications. We rely on OCaml lexing and parsing libraries OCamllex [23] for handling the

front end of our query specification language. We use Z3 [8] to discharge SMT queries.

Hegel Library Specifications. Hegel performs component-based synthesis using libraries annotated

with refinement-type specifications. Fortunately, there are multiple open-source projects that

provide such specifications for our use [5, 21, 22, 25]. Our experiments adapt approximately 300

refinement type-annotated library functions drawn from these projects. These functions span

operations on data structures (e.g., arrays, lists, trees, queues, vectors, zippers, byte strings, etc).

We additionally include approximately 40 more specialized functions that target a specific database

application class [18]. Approximately, 25% of these library functions are higher-order.

9 EVALUATION

Our evaluation considers the following three research questions:

RQ1 Effectiveness of Hegel: How effectively can Hegel synthesize complex refinement type

queries? How does Hegel compare against other specification-guided, component-based

synthesis tools in its ability to synthesize programs when queries define fine-grained con-

straints?

RQ2 Scaling to query complexity: Complex queries correlate to the size and control-flow com-

plexity in synthesized outputs. How effective is Hegel in synthesizing programs as query

complexity scales?

RQ3 Impact of QTA reduction strategies on synthesis efficiency and quality: How significant are

the benefits of pruning and similarity reductions in reducing QTA size and the search space

over which the synthesis procedure operates?

9.1 Benchmarks

To effectively answer RQ[1-3], we required component-based synthesis benchmarks of the kind

shown in Section 2. To this end, we have collected a set of Hoogle+ [19?] and Hectare [22]

benchmarks originally used for (simple) type-guided synthesis over Haskell libraries, and re-

implemented them in OCaml for use by Hegel. To avoid selection bias towards queries with only a

particular kind of features (e.g., Hoogle+ queries are primarily first-order while Hectare mostly

avoids first-order queries), we divided the original benchmarks from these two sources into three

, Vol. 1, No. 1, Article . Publication date: August 2025.

20 Anonymous

main categories: standard first-order queries primarily fromHoogle+; higher-order queries primarily

from Hectare and polymorphic queries from both these sources.

To create realistic, refined queries from these, and compare Hegel against other tools, we refine
each of these to include three different user-provided refinements. These refinements are carefully

chosen so that they invalidate the synthesized output on the original (unrefined) query. We specify

the intent of these refinements in the Hoogle+ runs using 4 I/O examples; Hectare does not accept

query refinements or I/O examples and performs synthesis only based on the (non-refined) standard

types given in the library. To make the comparison as fair as possible, we drop queries in our

benchmark set that cannot either be easily refined using I/O examples, or where the refinement

type specification was trivial compared to the I/O example. Our goal was to choose queries that

collectively cover all three categories with non-trivial refined queries, and with a similar degree

of complexity in both I/O and refinement type specifications. These requirements led us to select

14 queries across the three categories that we found to be amenable for such comparison.
7
We

then compare the performance of Hoogle+, Synquid [26], a deductive synthesis tool that uses

refinement types for its specification, and Hegel on 42 (14 × 3) different refined queries, making

our comparison extensive. Table 12, shows these original queries type specifications along with

description of each of the refined queries.

9.2 RQ1: Effectiveness and Comparison with Other tools

Results. The table in Figure 12 presents the main experimental results for RQ1. Tables in Fig

4 and 5 in [1] show a) the number of SMT calls, b) time spent for constraints solving, c) Number

of original QTA states (|Q|), and d) QTA states after minimization (|Q| min) for RQ1 and RQ2

benchmarks respectively. The first column gives a symbolic name for the refined benchmark

derived from the original Hoogle+ and ECTA benchmarks. For example, the Nth1 benchmark

requires a solution that performs a non-trivial swapping of the values at given indexes in the input

list
8
. Several benchmarks also include higher-order functions; these are given as the last five (×

three benchmarks) set of queries, marked with †.

The input to Hegel is a refinement-type query and a pre-annotated set of libraries. To quantify

query specification burden, the next column in the table provides a measure of specification size

in terms of the number of conjunctions(∧) and disjunctions(∨). The average size of these specs is
around four-five conjuncts making this overhead small, particularly when compared against size of

the library, the complexity of the search, and the number of examples needed to capture these in i/o

settings like Hegel. The next three columns show the results for running Hegel(He), Hoogle+(H+)
and Synquid (Sn) on each benchmark. For each of these runs, we used a timeout limit of three

minutes and maximum term size bound of five library function calls. All results were performed on

a standard off-the-shelf laptop with 8GB of memory.

As the table shows, Hegel is able to solve all benchmarks under 11 seconds, with an average time

of around 7.6 seconds. Hoogle+ (H+), was able to solve only a fraction (6/42) of the benchmarks,

taking approximately 6x more time to yield a solution than Hegel.
There is no data to report for Hectare because it does not support logical refinements (either

as types or I/O examples) on queries. Column ‘Sn‘ shows the synthesis time for Synquid, which

solves around 20/42 of these benchmarks, while taking substantially more time, around 4.5x, on

average. This is understandable, given that Synquid’s goal is not efficient CBS and hence does not

employ any efficient pruning or search mechanism.

7
See supplemental material for a detailed description of our benchmark set, along with one example with explanation.

8
See supplemental material for details on the original simply-typed queries and a description of the refinements for each

benchmark

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 21

The next four columns provide statistics for the QTA reduction and constraint solving overhead

in Hegel. These provide a) the number of SMT calls, b) time spent for constraint solving, c) the

number of original QTA states (|Q|), and d) the number of QTA states remaining after minimization

(|Q| min) for RQ1 and RQ2 benchmarks, resp. Overall, on average, Hegel makes approximately 30

SMT calls per benchmark while spending close to 3.8 seconds on average per benchmark; thus,

approximately 40% of overall synthesis time is spent in constraint solving. The final column (#S)

gives the size of Hegel’s solution in terms of the number of library function calls in the synthesized

result. These numbers, in most cases, differ from the solutions for the original query. In fact, in

several cases the solutions also introduce new control-flow branches (2 branches in each case) that

were absent in the original; we label these benchmarks with a ★.

Name #∧/∨ Refined Time(s)/# QTA & SMT Stats #S

He H+ Sn #SMT SMT Time |𝑄 | |𝑄 |min

Nth1 4 5.1 39.4 21.3 22 3.07 239 53 4

Nth2 3 7.6 22.7 25 3.40 199 56 5

Nth3 4 9.1 33 4.01 210 78 5

RevApp1 3 5.1 49.5 18 2.87 110 56 3

RevApp2 3 7.3 22 3.90 166 61 4

RevApp3 4 5.4 18 3.03 201 43 4

RevZip1 3 6.1 43.2 22.6 31 4.21 278 69 4

RevZip2 4 6.9 28.1 21 3.80 189 69 5

RevZip3 4 8.5 39 5.07 301 62 6

SplitAt1 4 6.8 32.1 19 2.10 156 47 5

SplitAt2 5 7.3 24.3 28 4.13 176 76 4

SplitAt3 4 7.8 25 4.40 173 54 5

Nth_Incr1 3 5.2 35.4 36.8 19 3.70 143 38 3

Nth_Incr2 4 7.4 56.3 37 5.12 187 87 5

Nth_Incr3 4 7.8 39.5 26 4.30 165 73 5

CEdge1 4 6.4 21.5 21 3.10 110 39 4

CEdge2 4 5.2 23.7 11 2.87 145 34 3

CEdge3 5 8.6 24 2.98 167 42 5

AppendN1 4 6.0 47.7 21 3.04 267 61 4

AppendN2 4 10.4 39 4.70 310 76 7
★

AppendN3 4 7.5 25.8 31 4.60 234 57 5

SplitStr1 4 6.5 17 3.10 212 41 5

SplitStr2 4 5.2 36.2 18 1.90 245 63 5

SplitStr3 6 7.1 21 3.00 277 87 5

LookRange1 4 8.2 43.6 37 2.80 413 99 6
★

LookRange2 6 9.1 65 3.30 512 114 7
★

LookRange3 4 8.6 57 3.80 511 114 7
★

Map1† 5 7.5 41 3.60 219 110 6

Map2† 6 5.2 45.1 34.1 25 2.20 198 55 4

Map3† 5 5.0 33.5 29.8 22 1.40 176 53 4

MapDouble1† 4 10.8 36 3.02 399 89 5

MapDouble2† 4 8.9 51 3.60 465 88 4

MapDouble3† 6 8.4 42.8 55 2.60 452 101 4

ApplyNAdd1† 6 7.9 27 3.10 259 76 5

ApplyNAdd2† 6 6.9 63.1 34.2 17 3.60 331 59 5

ApplyNAdd3† 6 9.1 34 5.20 323 79 6

ApplyNInv1† 5 9.5 34 4.80 299 83 5

ApplyNInv2† 5 7.6 32.4 11 6.30 134 38 5

ApplyNInv3† 6 8.1 55.6 13 4.80 156 41 5

ApplyList1† 4 12.3 65 7.50 519 132 8
★

ApplyList2† 4 10.5 59 7.70 483 122 8
★

ApplyList3† 5 7.9 42.6 43 4.10 277 75 6
★

Fig. 12. Results for experiments with Refined Hoogle+ (H+) and ECTA benchmarks. The details of the original
queries and a description of the refinements for each benchmark is given in the supplemental material.

, Vol. 1, No. 1, Article . Publication date: August 2025.

22 Anonymous

Name Desc. #∧/∨ Results Hegel QTA & SMT Stats T(Sn)

T(He) #C #B #R #SMT SMT(s) |𝑄 | |𝑄 |min

NLInsert Add a newsletter and user 6 22.7 16 2 31 110 11.12 779 212 126.2

NLRemove Remove a newsletter and user 4 39.9 20 4 35 189 19.34 1201 372 _

NLR_Remove Read articles list and remove 5 42.8 19 4 21 213 18.20 1331 381 _

NLInv Remove with uniqueness in-

variant

8 52.5 25 4 36 154 24.19 1398 435 _

FWInsert Insert a normal device 4 31.2 15 2 33 166 12.34 945 298 124.6

FWMkCentral Insert a central device 4 65.2 33 4 53 259 27.13 1611 401

FWInsConn Insert a device connected to all 5 36.8 14 2 59 218 15.12 806 261

FWInvert Invert the connections 4 33.9 14 4 47 197 15.70 1176 323

FWInvertDel Delete, and invert connections 6 47.3 17 4 38 184 22.90 1352 421

Fig. 13. Results for tailored specification-guided synthesis benchmarks, The #C and #B gives the total number
of function calls and branches in the synthesized solution. #R gives the number of transitions Hegel merged
during the Similarity reduction and Irrelevant code pruning phases.

9.3 RQ2, Scaling Hegel to larger and complex queries

To answer RQ2, we consider synthesis query benchmarks whose solutions require longer call

sequences and more complex control flows than the queries given in the table shown in Figure 12.

We have collected and refined eight queries adapted from verification benchmarks [18] that are

particularly amenable for CBS techniques. Figure 13 lists these benchmarks, which are defined over

two database applications [18]. We only show Hegel and Synquid results because Hoogle+ was not

able to produce solutions within the timeout bound (3 minutes).

The first is a Newsletter database (queries with names NL. . . in the table) that defines a single

table NS equipped with various attributes (e.g., newsletter, user, subscribed, articles, code, clear_email,
add_email, etc.). For example, query NLRRemove is shown as a comment in Figure 14, it encodes

the following problem: Synthesize a function that returns a list of articles for a given newsletter (n)
and a given user (u) in a database (d), along with an updated database that does contain u and nl,
while keeping the email address if u has opted for promotions. The second application implements

a network firewall database (queries with names FW. . . in the table) that manages two tables, a

table of devices and a table storing sender-receiver links. These benchmarks are adapted from their

original definition to employ a monadic style that threads database state through calls.

Synthesizing programs from queries of this kind must take into account appropriate protocols

associated with the libraries, e.g., to establish a connection to a device that is not currently in the

device table requires that the device first be added. These constraints also require conditional-control

flows in the solutions.

Results. The first two columns in Figure 13 give the name and a small high-level description of

the benchmark. The next two columns ‘He’ gives the synthesis time in seconds. Hegel succeeds in
finding solutions to all queries with a synthesis time in the range of 22.7 seconds to little more than

a minute. Its ability to solve these queries can be attributed to an efficient exploration enumeration

strategy that effectively reduced, either via Prune or Similarity reduction strategies, a large

number of tranistions during synthesis. These numbers are given in the (#R) column and ranges

from 21 in NLR_Remove, to as high as 59 transitions in FWInsConn. Note that the effective actual
saving in enumeration is much more that this, as an exponential number of other transitions built

over these are never constructed.

To quantify the complexity of the synthesized solutions, we also list the properties of the solutions

synthesized in terms of the total number of function calls (i.e., the size of the solution) as well as

solution complexity in terms of the number of control flow branches. For instance, given the query

NLRRemove, the challenge is to synthesize a solution that maintains a specific contract associated

with each library function; these include the requirement that a) the user must be unsubscribed

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 23

before removal, b) if the user has not opted for promotions, the email for the user must be cleared,

etc. Figure 14 shows the synthesized program generated by Hegel for this query. Note that the
solution includes a total of 19 function calls and exhibits complex control flows (4 branches).

The next four columns show: a) the number of SMT calls, b) the time spent for constraint

solving, c) the number of original QTA states (|Q|), and d) the number of QTA states remaining

after minimization (|Q| min). The average number of QTA states produced is around 1200, while

Hegel’s pruning and minimization results in a roughly 70% reduction. The last column shows

synthesis times for Synquid, which is the only other tool that can work with refined specifications.

It produces results for only the smallest of the benchmarks, taking a little over two minutes on

those, while timing-out on all other cases.

1 (*nLRRemove : (n : nl) -> (u : user) ->
2 (d : {v: [nlrecord] | mem (v , n , u)}) ->
3 {v : (f : article * s : [nlrecord]) |
4 mem (f, articles (s))
5 ∧ ¬ nlmem (s, n, u)
6 ∧ (promotions (s, u) => email (s, u))
7 }*)
8 fun n u d ->
9 let x = read (d, n, u) in
10 let x0 = fst (x) in
11 let d0 = snd (x) in
12 let d1 = confirmU (d0, n, u) in
13 let x1 = promotions (d1, n, u) in
14 if (not (x1)) then
15 let subscribed = subscribed (d1, n, u) in
16 if (length (subscribed) > 0) then
17 let d2 = clear_email (d1, n, u) in
18 let d3 = unsubscribe (d2, n, u) in
19 let d4 = remove (d3, n, u) in
20 (x0, d4)
21 else
22 let d5 = unsubscribe (d1, n, u) in
23 let d6 = remove (d5, n, u) in
24 (x0, d6)
25

26 else
27 let d7 = unsubscribe (d1, n, u) in
28 let d8 = remove (d7, n, u) in
29 (x0, d8)

Fig. 14. Synthesized Program for NLR_Remove

9.4 RQ3: Impact of irrelevant

code pruning and similarity reduction

Because RQ3 cuts across both set of benchmarks,

we perform several ablation experiments over the

queries described in the Figures 12 and 13. We

create three variants of Hegel, viz. (i) Hegel(-P),
a QTA-based synthesis implementation without

the irrelevant code reduction (i.e. comment out

the Prune call at line 7 in Algorithm 1), but retain-

ing similarity reduction; (ii) Hegel(-S), a variant
of Hegel with support for pruning but without
similarity reduction (i.e., lines 8 and 9 in Algo-

rithm 1) are commented out); and, (iii)Hegel(-All),
a baseline variant that constructs the QTA with-

out performing any reduction (i.e., removes lines

7-9 in the algorithm). We compare these variants

in terms of two main metrics, overall synthesis
times and the size of the search space in each case

after the reduction, shown by number of program
terms enumerated during search, compared to the

base-line (Hegel(-All).
The first two charts in Figure 15 show results

for overall average synthesis times across the two

sets of benchmark queries described earlier. We note that both Hegel(-S), and Hegel(-P) can solve

all queries from RQ1, but at a cost which is 2 - 3X greater than Hegel. Hegel(-All) on the other hand

fails on almost half of the benchmarks. In contrast, although Hegel(-P) was also able to solve the

full complement of queries studied in RQ2, it did so with a considerable larger overhead compared

to Hegel, while here the the irrelevant code pruning (Hegel(-S)) alone is insufficient to scale the

variant to these challenging benchmarks and it fails to solve 3/9 benchmarks. The second pair of

charts and show the average number of terms enumerated by these different variants, showing the

reduction of search space by each reduction strategy, with Hegel(-All) as the baseline. Here we see,
with the combined reduction strategies, Hegel sees the maximum search space reduction, while

the other two variants Hegel(-P) and Hegel(-S) having much larger search spaces, (anywhere from

2-4.5X more) without necessarily solving the same number of queries.

, Vol. 1, No. 1, Article . Publication date: August 2025.

24 Anonymous

Fig. 15. Comparison of Hegel and its variants Hegel, Hegel(-S), Hegel(-P), Hegel(-ALL), on average synthesis
times and the number of candidate terms generated on RQ1 and RQ2. The labels on each bar show the
number of benchmarks solved by these variants out of 42 in the case of RQ1 and 9 in the case of RQ2.

10 RELATEDWORK

Component-based Synthesis. There is a long line of work on the use of CBS in the context of domain-

specific languages [10, 20] as well as general-purpose programming domains [9, 11, 16, 17, 25, 28, 31].

Despite various technical differences, these approaches all include some form of search at their

core, which they tackle using basic type information [11, 16], or a combination of types and limited

effects [17]. Our contributions in this paper extend prior work by enabling CBS to be applied

when specifications and queries are equipped with logical refinements, substantially increasing

the complexity of the search process. While some prior work [9, 25] also use logical properties to

prune the feasible search space, they provide only limited benefits in the absence of a data structure

like QTA with respect to query complexity scaling. For example, running [25] on the benchmarks

in Figure 13 produces results similar to Hegel(-ALL).

Using similarity/equality information for search. Recent interest in utilizing equality information,

and using ways to calculate equality saturation sets using e-graphs [33] allows efficient reduction

of an enumeration space similar to the motivation underlying our approach. Equality saturation

has been applied to enable efficient abstraction learning [4] inductive synthesis [3] and program

analysis [36]. However, all these works depend crucially on fast calculation of the equality saturation

set, making them suitable for syntactic similarity relations, but it is not obvious how to extend

this technique to provide support for semantic (subtype-based) similarity checks as in our setting.

Nonetheless, we leave as future work, questions related to how QTA-like structures can benefit from

the general capabilities provided E-graphs. Another line of work in this vein [?] asks users to provide
logical equivalences between operators that can be then used to accelerate the synthesis process.

This requirement has utility when dealing with small DSLs where a user is likely to understand

operator semantics and their equivalences, but we expect will be infeasible in a component-based

synthesis setting that deals with libraries with a large number of methods.

Our idea of similarity reduction is also related to the notion of observational equivalence found in
programming-by-example synthesis approaches [1, 12, 24]; these techniques compare synthesized

programs on a given set of inputs and prune the search-space in a bottom-up, inductive synthe-

sis setting. Its inherent unsoundness makes this mechanism infeasible for specification-guided

synthesis.

Tree automata for program synthesis. As described earlier, prior work has leveraged tree automata

to compactly capture the space of programs [13, 22, 32] in a synthesis setting; such automata have

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 25

also been used in the synthesis of reactive systems [13]. In fact, recent work [22] has also proposed

techniques to qualify the states of such automata, albeit with syntactic equality constraints [6, 7]

to capture dependences between sub-spaces, allowing efficient reduction of the search space over

base types. We see our contribution as a continuation of these efforts, generalizing them to handle

richer semantic dependences expressed in specifications and queries.

Closely related to our work is Blaze [?] which introduces an abstract finite tree automata (AFTA)

to help implement its synthesis procedure. AFTA’s states, like QTA’s, are also defined by a type plus

a predicate. However, there are a number of important differences between the two approaches;

first, unlike the qualifiers in QTA, which are refinement types, the abstract predicates in AFTA are

formulas capturing an abstract domain [?]. The annotations on the states are much more complex

in QTAs, expressed as quantified formulas over program variables; in contrast, AFTA’s predicates

are quantifier-free formulas over an abstract domain. QTA qualifiers, on the other hand, are used

to navigate a compact representation of the search space and to help find similarities between

subspaces in a refinement-type guided deductive synthesis procedure. Second, unlike AFTA’s, QTAs

also support function types, higher-order programs, and let bindings. These differences lead to

substantially different synthesis algorithms in these two approaches. CTA [?] also adds constrains

to traditional tree automata similar to how symbolic finite automata extends finite automata.

Particularly, CTA allows transitions guarded by a logical formulas from a decidable theory, allowing

them to effectively capture relational properties with deciadable acceptance checking. Unfortunately,

these logical formulas cannot relate sub-automata, like in QTA or ECTA, thus, making them less

effective to capture typing semantics. Allowing CTA-like constraints in QTA, however, may allow

us to extend our synthesis approach to yield recursive and mutual recursive functions; we leave

this as part of future work..

Refinement types and conflict-driven learning for synthesis. Several earlier works have used

refinement types for program synthesis [22, 25, 26]. Although, Synquid’s synthesis is also guided

by Refinement Types, its goals differ from ours, and it does not aim towards efficient CBS in

refinement-typed space. A family of works using CDCL may also be somewhat related, however,

the CDCL avoidance [11, 25] of equivalent failing terms alone has limited pruning capabilities, as

the synthesizer still has to explore a large number of terms that have neither failed (they may still

lead to a correct solution when further explored) nor reached the maximum term-size depth. In

such cases, a CDCL-based synthesizer is still forced to explore many equivalent (non-failed) terms;

e.g, all the terms shown in blue, gray or yellow boxes in Figure 5 may still be generated using

such techniques. Roughly speaking, the overall performance of such an approach is on par with

Hegel(-S), the green bar in Figure 15.

11 CONCLUSIONS

This paper describes a new component-based synthesis algorithm and tool (Hegel) designed to

operate on libraries and queries that are equipped with refinement-type specifications. These

specifications can impose significant constraints on the set of feasible solutions making naïve

enumeration of the search space impractical. We propose a new tree automata variant (QTA)

to succinctly represent the search space in this setting, and propose a number of semantics-

based optimizations to greatly reduce search overhead. allow efficient construction and enable

semantic-based similarity checking among candidate terms to greatly reduce search overhead.

Our experimental results demonstrate that Hegel is able to successfully synthesize correct outputs

given complex query inputs over a range of application benchmarks that exceed the capabilities of

existing systems.

, Vol. 1, No. 1, Article . Publication date: August 2025.

26 Anonymous

DATA AVAILABILITY STATEMENT

Our supplementary material includes an anonymized artifact. This artifact contains the OCaml

source code for Hegel and our suite of benchmark programs. We intend to submit this artifact with

additional scripts to automatically generate the results for evaluation by the artifact evaluation

committee should this paper be accepted.

REFERENCES

[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Computer Aided
Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 934–950.

[2] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009. Handbook of Satisfiability. Frontiers in
Artificial Intelligence and Applications, Vol. 185. IOS Press.

[3] Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis, and Armando

Solar-Lezama. 2023. Top-Down Synthesis for Library Learning. Proc. ACM Program. Lang. 7, POPL, Article 41 (jan
2023), 32 pages. https://doi.org/10.1145/3571234

[4] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova. 2023. Babble:

Learning Better Abstractions with E-Graphs and Anti-Unification. Proc. ACM Program. Lang. 7, POPL, Article 14 (jan
2023), 29 pages. https://doi.org/10.1145/3571207

[5] Arthur Charguéraud, Jean-Christophe Filliâtre, Mário Pereira, and François Pottier. 2017. VOCAL – A Verified OCaml

Library. ML Family Workshop.

[6] Hubert Comon. 1997. Tree automata techniques and applications. https://api.semanticscholar.org/CorpusID:2092186

[7] Max Dauchet, Anne-Cécile Caron, and Jean-Luc Coquidé. 1995. Automata for Reduction Properties Solving. Journal of
Symbolic Computation 20, 2 (1995), 215–233. https://doi.org/10.1006/jsco.1995.1048

[8] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

337–340.

[9] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis Using Conflict-Driven Learning. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,

PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 420–435. https://doi.org/10.1145/

3192366.3192382

[10] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-Based Synthesis of

Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing

Machinery, New York, NY, USA, 422–436. https://doi.org/10.1145/3062341.3062351

[11] Yu Feng, RubenMartins, YuepengWang, Isil Dillig, and ThomasW. Reps. 2017. Component-Based Synthesis for Complex

APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL
2017). Association for Computing Machinery, New York, NY, USA, 599–612. https://doi.org/10.1145/3009837.3009851

[12] Jack Feser, Işıl Dillig, and Armando Solar-Lezama. 2023. Inductive Program Synthesis Guided by Observational Program

Similarity. Proc. ACM Program. Lang. 7, OOPSLA2, Article 254 (oct 2023), 29 pages. https://doi.org/10.1145/3622830

[13] Bernd Finkbeiner, Felix Klein, Ruzica Piskac, andMark Santolucito. 2019. Synthesizing Functional Reactive Programs. In

Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell (Berlin, Germany) (Haskell 2019). Association
for Computing Machinery, New York, NY, USA, 162–175. https://doi.org/10.1145/3331545.3342601

[14] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continu-

ations. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation
(Albuquerque, New Mexico, USA) (PLDI ’93). Association for Computing Machinery, New York, NY, USA, 237–247.

https://doi.org/10.1145/155090.155113

[15] David Furcy and Sven Koenig. 2005. Limited Discrepancy Beam Search. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence (Edinburgh, Scotland) (IJCAI’05). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 125–131.

[16] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, ZitengWang, Ranjit Jhala, and Nadia Polikarpova. 2019. Program

Synthesis by Type-Guided Abstraction Refinement. Proc. ACM Program. Lang. 4, POPL, Article 12 (Dec. 2019), 28 pages.
https://doi.org/10.1145/3371080

[17] Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2021. RbSyn: Type- and Effect-Guided Program

Synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 344–358.

https://doi.org/10.1145/3453483.3454048

, Vol. 1, No. 1, Article . Publication date: August 2025.

Close is Good Enough: Component-Based Synthesis Modulo Logical Similarity 27

[18] Shachar Itzhaky, Tomer Kotek, Noam Rinetzky, Mooly Sagiv, Orr Tamir, Helmut Veith, and Florian Zuleger. 2017. On

the Automated Verification of Web Applications with Embedded SQL. In 20th International Conference on Database
Theory, ICDT 2017, March 21-24, 2017, Venice, Italy (LIPIcs, Vol. 68), Michael Benedikt and Giorgio Orsi (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 16:1–16:18. https://doi.org/10.4230/LIPIcs.ICDT.2017.16

[19] Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova. 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 205 (nov
2020), 27 pages. https://doi.org/10.1145/3428273

[20] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-Guided Component-Based Program

Synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape
Town, South Africa) (ICSE ’10). Association for Computing Machinery, New York, NY, USA, 215–224. https://doi.org/

10.1145/1806799.1806833

[21] Ranjit Jhala and Niki Vazou. 2021. Refinement Types: A Tutorial. Found. Trends Program. Lang. 6, 3-4 (2021), 159–317.
https://doi.org/10.1561/2500000032

[22] James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia Polikarpova. 2022. Searching Entangled

Program Spaces. Proc. ACM Program. Lang. 6, ICFP, Article 91 (aug 2022), 29 pages. https://doi.org/10.1145/3547622

[23] Xavier Leroy, Didier Rémy Alain Frisch, Jacques Garrigue, and Jérôme Vouillon. 2022. Parsing with Ocamllex.

https://ocaml.org/manual/lexyacc.html

[24] Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up Synthesis of

Recursive Functional Programs Using Angelic Execution. Proc. ACM Program. Lang. 6, POPL, Article 21 (jan 2022),

29 pages. https://doi.org/10.1145/3498682

[25] Ashish Mishra and Suresh Jagannathan. 2022. Specification-Guided Component-Based Synthesis from Effectful

Libraries. Proc. ACM Program. Lang. 6, OOPSLA2, Article 147 (oct 2022), 30 pages. https://doi.org/10.1145/3563310

[26] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement

Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 522–538. https:

//doi.org/10.1145/2908080.2908093

[27] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107–126.

https://doi.org/10.1145/2814270.2814310

[28] Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel: Component-Based Synthesis with Control Structures.

Proc. ACM Program. Lang. 3, POPL, Article 73 (jan 2019), 29 pages. https://doi.org/10.1145/3290386

[29] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying Higher-Order

Programs with the Dijkstra Monad. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York,

NY, USA, 387–398. https://doi.org/10.1145/2491956.2491978

[30] Niki Vazou, Alexander Bakst, and Ranjit Jhala. 2015. Bounded Refinement Types. In Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for

Computing Machinery, New York, NY, USA, 48–61. https://doi.org/10.1145/2784731.2784745

[31] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. 2019. Visualization by Example. Proc. ACM
Program. Lang. 4, POPL, Article 49 (dec 2019), 28 pages. https://doi.org/10.1145/3371117

[32] Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Synthesis of Data Completion Scripts Using Finite Tree Automata.

Proc. ACM Program. Lang. 1, OOPSLA, Article 62 (oct 2017), 26 pages. https://doi.org/10.1145/3133886

[33] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021.

Egg: Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages.

https://doi.org/10.1145/3434304

[34] Steven Wolfman, Pedro Domingos, and Daniel Weld. 2001. Programming By Demonstration Using Version Space

Algebra. Machine Learning 53 (12 2001). https://doi.org/10.1023/A:1025671410623

[35] Yongwei Yuan, Arjun Radhakrishna, and Roopsha Samanta. 2023. Trace-Guided Inductive Synthesis of Recursive

Functional Programs. 7, PLDI (2023). https://doi.org/10.1145/3591255

[36] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max

Willsey. 2023. Better Together: Unifying Datalog and Equality Saturation. Proc. ACM Program. Lang. 7, PLDI, Article
125 (jun 2023), 25 pages. https://doi.org/10.1145/3591239

, Vol. 1, No. 1, Article . Publication date: August 2025.

