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—— Abstract

Typestates are useful programming language concepts to model software protocols. In this thesis

we provide programming language based approaches for analysis, checking and verification of rich
typestate properties over complex programs. Firstly, we use known typestate analysis approaches
to capture crucial API protocol violations in Android applications. The complex control flow se-
mantics of these programs makes the task challenging, while the excessive usage of resources and
other APIs by Android makes it important. Secondly, we tackle the expressive limitations associ-
ated with typestates, and present a generalized notion of typestate using the expressive power of
dependent types. These expressive typestates, which we term as Beyond-Regular Typestate (BR-
typestate)7 are expressive enough to model many important non-regular properties (typestates
can only express regular program properties), and yet have decidable type-checking, and even
a decidable type-inference in certain cases. We further present a practical typestate oriented,
dependently typed language incorporating these BR-typestates and present soundness results
about the type system. For both the parts of the work, we create prototype systems to empiric-
ally evaluate the concepts discussed.
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1 Introduction

Protocols are one of the most commonly used abstract concepts, acting as an implicit
contract between components of a software system or across systems. These contracts must
be respected by all the software components participating in the protocol. Some of the
common examples include a producer-consumer related protocol between two components
acting as server and client respectively, or a session-based protocol between the sender and
the receiver. Often these protocols need not be a multi-party contract, rather a set of rules
associated with a data structure or an object. For example, the initialization operation
is only allowed on an uninitialized variable, a File object can be read only if it has been
opened, etc. Violating these protocols could lead to semantically invalid programs, or in
some cases might open exploitable vulnerabilities in programs. For instance, failing to check
array bounds might lead to buffer-overflow vulnerabilities.

Typestates [18] were introduced by Strom and Yemini as a programming language concept
to capture the state associated with a type. Typestates allows programmers to model and
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statically check stateful protocols and contracts. For example, a File type can have two
different typestates viz. open and close, with a protocol allowing read operation only in the
open state.

1.1 Goal of the Thesis

In this thesis, we present programming language based approaches for analysis, checking
and verification of rich typestate related properties over complex programs. In the first
part, we present a sound typestate analysis over asynchronous, event based programs like
Android applications. Through this we check API protocol violations and other security
protocol violations in Android applications. The analysis necessitates to correctly model
the control flow semantics of Android applications with its intricacies, such as asynchronous
calls, multiple entry-points and control flow semantics enforced by the Android framework.

Typestates can enforce conceptual properties over programs and aid in making software
reliable and robust. However, they can only express program properties from the regular
language domain. For instance, typestates can enforce regular program properties like Pop
be called on a stack object only after a call to Push or Pop is never called on an empty stack,
but cannot enforce a non-regular property like Push be called at least as many times as Pop.

In the second part of the thesis we work at solving this expressive limitation of typestate.
We propose a generalized notion of typestate which we call "Beyond-Regular Typestate
(BR-typestate)". BR-typestates are restricted, dependently typed extension of the normal
typestate. They enjoy richer expressiveness of dependent types, yet preserve the decidability of
type-checking, unlike general dependent types where type-checking is undecidable. Further, to
make them practically useful we present a dependently typed, typestate-oriented programming
language, whose type system incorporates these BR-typestates making it expressive enough
to implement and check programs requiring non-regular program properties which could be
statically type-checked in an efficient way.

2  Asynchrony-Aware static analysis for Android Applications

Android applications have convoluted control flow with asynchronous inter-component
communication, library callbacks, event handling and other Android framework enforced
control flow semantics. A sound static analysis of such programs requires a correct modeling
of Android control flow, failing to model this leads to both unsound results and loss in
precision in many cases. For instance, consider a FileReader application in figure 1. The
application has two activities SelectActivity and ReadFileActivity. The application
allows the user to select a file in SelectActivity and open the file in ReadFileActivity.
The FileReader object, line 2, is a global static reference which is accessible through both the
components. To verify a typestate property like- The application never reads from a closed
FileReader, the analysis needs to verify and guarantee that the FileReader.read() is never
called when the FileReader has been closed using FileReader.close() and not reopened
again. To soundly capture this, the analysis must treat the inter-component call at line 11
as asynchronous call. Further, the analysis should have a correct modeling of the life-cycle
of an Android Activity component, which enforces that onResume () of SelectActivity
is executed before the dispatch of the pending asynchronous call to ReadFileActivity.
Incorrect modeling of these control flows will lead to missing of typestate violation possibly
occurring at line 36.

Our main idea in this part of the work is to solve this unsoundness problem by presenting
an Android inter-component control flow graph (AICCFG). This is an intermediate program
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1 class SelectActivity extends ActionBarActivity{

2 public static FileReader myFileReader;

3 protected void onCreate(Bundle savedInstanceState){
4 (...)

5 try{

6 String filePath = this.getFilesDir () + '/’ + "exFile.txt";
7 myFileReader = new FileReader (...) ;

8 int data = myFileReader.read () ;

9 Intent targetIntent = new Intent (this, ReadFileActivity.class);
10 // asynchronous call to the ReadFileActivity

11 startActivity (targetIntent);

12 Y//catch block

13 }

14 (...)

15 protected void onResume () {

16 (...)

17 try{

18 myFileReader . close () ;

19 Y//catch block

20 }

21 }

31 class ReadFileActivity extends ActionBarActivity {
32 (...)

33 protected void onStop (){

34 (...)

35

36 int data = SelectActivity .myFileReader.read () ;

37 Log.d("ReadFileActivity", "data " +data);

38

39}

Figure 1 FileReader Application

representation for Android applications. It soundly captures the control-flow semantics
involving asynchrony and other complex features, like framework callbacks and life-cycle of
components. We further build an asynchronous inter-procedural typestate analysis over the
AICCFG created for the application.

2.1 Asynchronous Inter-component Control Flow Graph (AICCFG)

An AICCFG is an asynchronous control flow graph G, = (Vi, E,) for an Android application,
modeling the asynchronous calls, event handlers and lifecycle callbacks invoked by the
Android framework. An AICCFG acts as a sound intermediate program representation for
applications. Figure 2 shows a part of the AICCFG for the example FileReader application
in figure 1. The AICCFG has a special dispatch node (gray node vd), which manages the
asynchrony and other life-cycle related control flow features. Interested readers can find
the details in [13]. We first present an algorithm to generate such an AICCFG for a given
application. We then build a flow sensitive version of an asynchronous typestate analysis,
which is an extension of the AIFDS [8] approach, extended for Android applications. The
AICCFG generated acts as the input program to this analysis. Further, since ours is the first
asynchrony-aware static analysis work over Android applications, we compare it against the
state-of-the-art synchronous-only static analyses tools [10, 20].
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Figure 2 Part of AICCFG for FileReader application

2.2 Evaluation

The major goals of our experimental evaluation are: firstly, to show the the soundness of
asynchronous control flow modeling of Android applications. Secondly, to illustrate the
usefulness of the modeling, and finally, to compare it against the current works which
model these semantics incorrectly. To achieve first and second goals, we present a typestate
analysis build on our AICCFG. A sound typestate analysis requires us to maintain a global
state of shared resources. Since these global states may change between the time when an
asynchronous call is made, and it is actually dispatched by Android framework, we need
to correctly capture the asynchronous semantics of these calls. Using our model, and an
asynchrony-aware analysis built over it, we find typestate violations in number of applications
which could not be captured otherwise. Since there are no other works performing typestate
analysis over Android applications, a direct comparison is not possible to achieve the final
goal. Thus, we compare the control flow model generated by us against those generated
by others. For an efficient comparison we extract the intermediate program representation
generated by these approaches (analogous to our AICCFG), which is agnostic about the
asynchronous nature of calls in Android applications, and build a synchronous version of
the typestate analysis over their program representation. Although, the comparison is
presented using typestate analysis, a direct comparison of control flow graphs will clearly
show the state-of-the-art approaches missing many valid control flow paths. The typestate
analysis further extends this comparison by showing that these missing paths will lead to
false negatives as well as false positives. We further release a set of benchmark applications,
AsyncBench, containing tests for typestate violations whose verification requires a sound
modeling and tracking of control and data dependencies in Android applications including
the asynchronous semantics and sound lifecycle modeling.
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2.3 Significance and Related Work

Static Analysis of Android applications and other such systems is an interesting problem.
Solving it efficiently is important to create reliable and safe applications and to help developers
debug these applications in a better and faster way. There is a significant interest in the
static analysis research community [10, 20, 1, 11] towards analysing these applications for
various data and control flow analysis problems ranging from information flow, slicing,
permission usability, etc. Most of these analyses emphasize at applying the known static
analysis techniques for Java programs to Android applications while focusing on scalability,
coverage and efficiency. Unfortunately none of the current static analyses works for Android
applications aim at soundly modeling the asynchronous control flow semantics of these
applications, and treat asynchronous calls similar to synchronous ones. This causes them
to miss many valid control flow paths in the application, thus effecting the correctness of
the static analysis. Furthermore, the asynchronous call semantics coupled with the life-cycle
semantics enforced by the Android framework, makes the control flow difficult to reason
statically and failing to model it further leads to unsound as well as imprecise results. There
are several other works on general static typestate analysis, such as [18, 5]. These works
tackle challenging problems like capturing typestate changes in presence of aliasing, but
they are different than our typestate analysis work which focuses on developing a typestate
analysis for Android applications. Thus, while we too handle aliasing in a limited way
through intra-procedural alias analysis prior to the main typestate analysis, the challenges in
our analysis are more specific to Android applications, like asynchrony, life-cycle modeling,
etc.

3 Beyond-Regular Typestate for Non-regular Properties of the
Programs

Typestates are useful programming language concept to capture varied program properties,
some of which we discussed in first part of the problem. For instance, using typestate, we
can specify and check a program property on a Stack data type, like "The pop operation
is called only after a push operation is already called". This helps programmers to identify
and eliminate a class of semantic bugs in the program. A static type system capable of
providing typestate guarantees further aides the elimination of these bugs early in program
development.

Although interesting and efficient at capturing the properties related to the state of data,
typestates can only express program properties from the regular language domain.

For instance, consider a commonly occurring non-regular property the property of matching
parenthesis. Figure 3 presents the XMLParser code from the XMLParser library for Java.
The parser needs to check the well formedness of xml files, which requires matching opening
and closing elements. This is a classic example of a context free language (Dyck language
with m parenthesis or D,,,). The parser dynamically maintains a stack of opening and closing
of elements and checks the well formedness at run-time in lines 7, 8, 9. Since the property of
matching parenthesis belongs to context free languages, current typestate definition lacks
expressiveness to model and check it statically. Moreover, these runtime checks are both
costly and error prone and might be difficult to debug as the manifestation of the error may
be distant from the cause, both in terms of location and time.

Many important semantic properties of programs do not belong to regular language
domain and hence are beyond the expressive capabilities of typestate. A few interesting
examples include properties related to producer-consumer, for instance the number of items



[ e R R N N

o e e e
AW N O ©

15
16
17
18
19
20

protected int scanEndElement () throws IOException, XNIException {
Coood
// pop context
QName endElementName = fElementStack.popElement ();

String rawname = endElementName.rawname;

if (!fEntityScanner.skipString(endElementName.rawname)) {
reportFatalError ("ETagRequired", new Object[l{rawnamel);

}

// end
...
if (fDocumentHandler != null ) {
fDocumentHandler.endElement (endElementName , null);
}
if (dtdGrammarUtil != null)
dtdGrammarUtil.endElement (endElementName);

return fMarkupDepth;

Figure 3 Example XML Parser checking well formedness of xml files

produced by the producer on the Channel is less than or equal to the mumber of items
consumed by the Consumer process, or properties defined over the size of Arrays and List,
for instance, statically guaranteeing safe array bounds, removing the need for runtime checks,
etc. Thus, there is a need to look further to bridge this gap between important program
properties and the expressiveness of typestates, and develop a generalized more expressive
notion of Typestate. In the lack of such a typestate, these properties are either checked
at runtime [9], or expressed using an expressive but undecidable systems [6, 19, 15], or
are converted to abstract model and then verified using existing non-regular verification
techniques. The main idea of this part of our work is to attack this gap, we use restricted
dependent types with dependent terms belonging to Presburger formulas to capture these
non-regular program properties in our typestate. Further, to make them practically usable we
propose a dependently typed, typestate oriented programming language, whose type system
incorporates these typestates, making it expressive enough to implement and statically check
programs requiring non-regular program properties, and yet having a decidable and efficient
type-checking.

3.1 BR-Typestate and the Core-language

BR-Typestate is a generalized notion of typestate, it is a dependently typed extension
of regular typestate. The dependent terms of the type system belong to a decidable
logical fragment of Presburger formulas. We present a core-language with BR-typestate
support, which is built over Plaid [2], a typestate oriented programming language. Figure 4
shows a portion of the safe version of Stack data structure written in our language. This
implementation guarantees a property, number of items pushed into a stack are always greater
than or equal to the number of items popped. Along with many other features, it allows
users to define dependent type families (line 2), which lets programmer capture runtime
properties of data using static types. Further, it allows to instantiate a type family (line
3), which lets the programmer introduce a concrete term of the dependent type family. It
also allows programmer to annotate each method with a Hoare style pre and post conditions
using Presburger formulas (lines 5 and 9). This lets programmer capture allowed typestate
transitions. The type-checker generates constraints using these annotations and finally
passes them to a Presburger constraint solver. The language has a decidable type-checking
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state StackCheckq{
type ValidStack : Pi (npush, npop | npush >= npop) -> Stack;
var unique ValidStack (0, 0) -> Stack testStack = new Stack (0, 0);

method void safePush(var elem) [ValidStack(m, n | m >= n -> Stack >> ValidStack(m’, n

> | m’> =m + 1, n’ = n, m’ > n’) -> Stack this)]{
// body
}
method int safePop() [ValidStack(m, n | m > n -> Stack >> ValidStack(m’, n’ | m’ = m,
n’ = n+l1, m’ >= n’) -> Stack this)]{
// body

Figure 4 Code snippet for safe Stack using BR-typestate

due to the decidability of Presburger arithmetic. Type annotations could be omitted for
simple cases. For instance, programmer can omit type annotations for data involved in some
primitive arithmetic operations. BR-Typestate system assumes that the while syntax is
annotated with a loop invariant, and we assume that this is provided by the programmer.
This assumption is essential to guarantee termination of our typechecking algorithm. This
could be a hard task for a novice programmer, and challenging even for an experienced
programmer. Fortunately, this burden could be placated in certain special subclasses of
programs or properties for which loop invariants could be effectively inferred. The loop
invariant inference is based on the efficient and decidable verification results [4, 3, 7] for some
known subclasses of multiple counter machines, like Flat Counter Machine [4]. Inferring
these loop invariants automatically for general class of programs is a challenging problem,
and is left for future work. Details of the language and other results could be found in [14].

3.2 Evaluation

To evaluate the effectiveness of BR-Typestate, we implement some important real world
programs requiring static checking of non-regular program properties. These properties could
not be enforced using regular typestates. For instance, we implement a statically verified
XML parser, and a statically verified static analyser which calculates a set of CFL-reachable
inter-procedurally valid paths in the control flow graph of an input program. We also provide
safe-versions of Plaid libraries with BR-annotated data types which provide safety guarantees
against various non-regular program properties.

3.3 Related Work

In this section we discuss the most closely related works to BR-typestate, and how they are
insufficient to address the problem described above. There are works presenting languages
incorporating typestate as first class language construct [2], or a type system to capture
typestate properties [12]. Although, they allow programmers to develop systems with correct
typestate properties, they face the wall of expressive limitations of normal typestate. In
absence of the needed expressiveness, they need to revert to runtime checks to check these
properties.

Fully dependently typed languages like Coq and Agda [19, 15] provide expressiveness to
model rich program properties, but this expressiveness comes at the cost of an undecidable
type-checking. One possible approach to tackle this undecidability is to restrict the dependent
terms of these languages to belong to a decidable theory. This is semantically equivalent



to defining a language similar to ours in Coq or Agda. This definition will be verbose and
complex for a programmer to build. Further, it will still be unsound and the onus will be on
programmer to prove the decidability and soundness of this restricted subset in Coq and
Agda. Finally, there are works which are some dependently typed extensions for simpler
languages [22, 21, 17, 16], similar to our approach. Our work differs from these in terms
of the domain of the language, and decidability of type-checking and type inference. For
instance, the constrained type of X10 [16] is related to the dependent type language we
provide in our work. X10 allows to define “constrained types” which are dependent types
with logical expressions over properties, final instance fields of a class, and final variables,
in the scope of the type as dependent terms. It also allows different constraint systems as
compiler plugin. Since, both X10 and BR-Typestate are related to DML, there are a few
similarities, yet some important differences. Firstly, the major focus of our work is to attack
the expressive limitations of typestates, thereby making it possible to verify non-regular
program properties and protocols, while X10 is targeted towards static checking of generic
constraints. Secondly, we have explicit restriction imposed over the dependent terms in our
language (Presburger formula language), these restrictions yields a decidable type-checking
for all valid programs in our languages and also yields a decidable type-inference in certain
special cases. Compared to this, the constraint checking and hence the type-checking is
undecidable in general for X10. Further, we provide a formal study of our BR-typestate and
discuss its correctness and other formal guarantees, X10’s does not look into these aspects of
its type system.

4 Conclusion

In conclusion, in this thesis we made a small contribution towards analysing and verifying
rich typestate properties over complex programs. We discussed two important typestate
related works. Further, BR-typestates could also be coupled with asynchrony-aware modeling
and analysis, to verify non-regular program properties over Android applications requiring
asynchrony semantics. For example, we can typecheck matching granting and revocation of
dynamic URI Permissions in applications. We leave such an analysis as a possible future
work.
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