Quantitative Reasoning and a
Bayesian View of Synthesis

with inputs on slides from Armando Solar-Lezama

Bayes Theorem

(B | A)P(A)
P(B)

P(A\B)=P

P(AnB)=P(B | A)P(A)= P(A | B)P(B)

Programming by Example

[(iny, outy), (iny, out,), ...(in,, out,)]

N
in, -n- out,

Problem is hopelessly underspecified
o Many semantically distinct programs can satisfy the examples

Bayesian View of PBE by < PE1 P

P(B)

P(evia’ence | f)P(f)
P(evidence)

P(f | evidence) =

Background

Prob/Prior
|/O Examples

For our purpose of finding an optimal f, we can ignore P(evidence) in the denominator

P(evidence) =0

Find the best f given the evidence

Bayesian View of PBE

P(evidenee | f)P(f)
P(evidence)

Find the best f given the evidence

P(f | evidence) =

Pl(evidence | f)P(f)
argmaXP(f evidence) = argmax (:)
P 7 P(evidence)

= argmax P(evidence | f)P(f)
f
WARNING: P(evidence) better not be zero!

crucial for making sure these are

P(e Uldence ‘ f) z is a normalization constant,

probabilities, but unimportant from

the point of view of optimiziation.

Perfectly captured I/O examples
1/z V, f(inl-) = out,

. P(evidence | f) = P([(inl-, out,-)]_ | f) = {
: 0 otherwise
» With a uniform P(f) this reduces to finding any function that works

P(f)

So far we have been using a uniform P

P(f) B {I/Z i f f belongs to the space of programs
’ 0 otherwise

Shortest programs are better than longer programs

P(f) =4 7

{i x e~len(f) i f f belongs to the space of programs

0 otherwise

Could we learn P(f)?

Programming by Example

[(iny, outy), (iny, out,), ...(in,, out,)]

N
in, -n- out

Problem is hopelessly underspecified
« Many semantically distinct programs can satisfy the examples

f‘ (in;, out,)])~ Pf<) ([(znl,out)] ‘)

P(evidence | f) for Synthesis
under errors

P(B | A)P(A)

P(A|B) = P

Imperfectly captured independent 1I/0O examples
. P(evidence | f) = P([(inl-, outi)]i | f) = H_P0|Z(0utl- ‘ f, in,)P(in,))

* For the purposes of maximizing P(f), P(in;) can be ignored if all inputs are
equally likely

Learning from noisy data

[(iny, outy), (iny, out,), ...(in,, out)]

in, -n- z,

Need to trade off quality of f against faithfulness to data
e This requires an error model

f‘ (in,, out) H ol 2 out,- ‘ f, in)

Example: Off-by-one Errors

Suppose we know off-by-one errors are possible in the data
(0.5 f(inl-) = out,
P0|Z<0uti ‘ fsim) =140.25 f(in,-) = out; £ 1

0 else
pr(f) is uniform, this reduces to

o “Discard programs that are more than one-off on any input”

o “From the remaining programs, select the one that matches the most
examples”

Off-by-one Errors

Suppose we know off-by-one errors are possible in the data
but others are possible as well.

iZO.S f(inl-) = out,

P0|z<0uti ‘ foin) = 1 %0.25 f(ini) = out; £ 1

€ else

.

Non-uniform P(f)

Trade off Polz(out,- ‘ f, in;) against P(f)

o A solution that misses more outputs may still be preferable if it has
much higher probability

Learning to Infer Graphics
Programs from Hand-Drawn
Images

https://proceedings.neurips.cc/paper/2018/file/6788076842014c83cedadbe6b0ba0314-Paper.pdf

From images to programs

Hand Drawn Figure

NN + Search

Circle(5,8)
Circle(2,8)
Circle(8,11)

for(i<3)
for(j<3)

Line(2,9, 2,10)
Circle(8,8)
Line(3,8, 4,8)
Line(3,11, 4,11)
Line (8,9, 8,10)

if(3>0)
line(-3%j+8,-3*i+7,
-3%j+9,-3%i+7)
line(-3%i+7,-3%j+8,
-3%i+7,-3%j+9)

Synthesis

Circle(5,14)

.etc. ...; 21 lines
Description of
elements in the drawing

circle(-3%j+7,-3%i+7)

Program representation
of drawing

Why? Correcting errors in perception

.
L

Unsupervised learning

[out,, out,, ...,out,]

N
in, -n- out,

This is hopelessly underspecified
o Can we identify the process that generated the sequence?

Kevin Ellis, Armando Solar-Lezama, Joshua B. Tenenbaum, Unsupervised Learning by Program Synthesis, 2015

http://papers.nips.cc/paper/5785-unsupervised-learning-by-program-synthesis

Unsupervized learning

P([out] | 1. [in]) (. [in)])
P([outl-])

P< f [ini] | [outi]> =

Assuming independence: p([outi] | £, [i”li]) =11, P(out; | f, in;)

Unsupervised learning

[out,, out,, ...,out,]

N
in, -n- out,

This is hopelessly underspecified
« Can we identify the process that generated the sequence?

P(f, [ini]i [outi] l_) ~ Pf(f) * HiP0|Z<OUti ‘ f,in,) x P, (in;)

To marginalize or not to Marginalize

> P(f. [in),

[outi] i) lin]

[out,—] l_)P([in,-])

i

p(f. |in)

i
Probability that a given function is consistent with the

- , _ _ observed outputs
Probability that a given function and inputs were the

cause for an observed series of outputs

Which of the two functions above should you be optimizing?

e Formulation on the left is easier to solve for
« especially with symbolic methods

Maximum Likelihood vs Sampling

Often your goal is to find the most likely f

P
. max (]

For some situations, sampling from Pf(f ‘ ...) is better

« The most likely is not necessarily the one you want
o E.g.in PBE the function the user has in mind may not be the “best”

Inversion, Rejection, Relationship and Approximation

Isn’t there a whole field
looking into this?

Machine learning has been studying these problems for a while

What we bring to the table:
« Flexible spaces of functions
o Complex distributions
o Powerful symbolic search techniques

Machine Learning for
Synthesis

e DeepCoder : Learning to Write Programs,
e Balog et al. ICLR 2017

e DreamCoder : Bootstrapping Inductive Program Synthesis with
Wake-Sleep Library Learning.

e Ellis et al. PLDI 2021

DreamCoder

Kevin Ellis, Catherine Wong, Mexwell Nye, Mathias
Sable-Meyer, Luc Cary, Lucas Morales, Like Hewitt, Armando
Solar-Lezama, Joshua B. Tenenbaum

Kevin Ellis et al. DreamCoder: bootstrapping inductive program synthesis with wake-sleep library learning.
PLDI 21

Whats happening here?

3128 —> 12131 7¥F
Q47223—>23%729

g5 1 —>183

Sorting: This core feature of
Humans is hard for ML

6 Lt 2- > 7 Combine ML techniques with

7 Abstration Learning

Program Synthesis (Inductive
Program Synthesis)

Goal: acquire domain-specific knowledge needed to induce a class
of programs

e Library of abstractions (domain specific language) Assumed this is given

e Inference strategy (synthesis algorithm)

Library Learning

Initial Sample Problem: sort list

Primitives 9271~ [1279]
38942~ [23489]
6223851 [22356 8]

map

fold
if

cons

Library Learning

Initial Sample Problem: sort list
Primitives 927 1] w
38942]—+ [23489]
- 6223851 [22356 8]
map
fold
if

cons

Library Learning

Initial Learned Library of Concepts Sample Problem: sort list
Primitives

9271 — [1279]
[38942]—+ (23489
map

622385 [22356 8]
concept_4 '
fold

if \"};ML P)(fold L nil |

(A(z u) (if (P 2)
cons | (cons z u) u))))

[filter]

Library Learning

Initial

Learned Library of Concepts Sample Problem: sort list
P 9271 — [1279
(38942]—+ [23489]
map

622385} [22356 8]
fold concept_4 W
v Ny PL_
cons (A(L P)(fold L nil
’ (A(z u) (if (P 2)
(cons z u) u))))

[filter]

Library Learning

Initial Learned Library of Concepts Sample Problem: sort list

R 9271]— [1279
38942]—~ [23489]

. 622385 [22356 8]
map concept 13)

fold concept (A(L){car (concept 4 L N

if \/(ML P){fold L nil (A(y) (nil? (concept_ 4 L

‘()\(/ u) (if (P 2) (A(z) (> 2 y)))))))) .
Y1
cons \(cons Z u) w)) [maximum]
>

[filter]

Library Learning

Initial

Learned Library of Concepts Sample Problem: sort list
Primitives ©9271— [1279]
(38942]—+ [23489]
ma.p 622385} [22356 8]
- concept_4 concept_13
if \ (A(L P)(fold L nil
(A(z v) (if (P 2) ._ (A(L) (car (concept 4 L
cons (cons z u) u)))) . .
R p— 1 (A(y) (nil? (concept_4 L
- |\

(A(z) (> z2¥))))))))

[maximum]

Library Learning

Initial Learned Library of Concepts Sample Problem: sort list
Primitives ©9271— [1279]
38942]—+ [234809]
me;p concept_13 622385} [2235638]
fold concept_4 (A(L){(car (concept 4 L
if \ (A(L P)(fold L nil (A(y) (nil? (concept_4 L concept_15
cons ((Ac(o/nsl‘)z (Ul)f u():’)),]) (Mz) >z ¥)))))))) \ (A (L N)(concept_13 (concept_4
[maximum)] L (A (LY(> N (length(concept_4
g [filter]

L (A (uy(>z u))in)

[nth largest element]

Library Learning

Initial Learned Library of Concepts Sample Problem: sort list
Primitives 9271]— [1279]
38942]—~ [23489]
: 622385 223568
map | concept_13 [| 5 638]
concept_4 L - - -
fold (A(L) (car (concept_4 L concent 15 | Solution to sort list discovered
if (A(L P){fold L nil (A(y) (nil? (concept 4 L PL_ .
(A(z w) (if (P 2) (A(z) >z y)NN ‘ in learned language:
cons (cons z u) u)))) (A (L N)(concept_13 (conc
‘ [maximum] L (A (LY(> N (length(COHC(map (A (n)
g [filter] | | » _ } L (A (u)(> z 1))

(concept 15 L (+ 1 n)))
(range (length L)))

[nth largest element]

get Nth largest element,
where Nis 1, 2, 3, ...

Library Learning

Initial Learned Library of Concepts
Primitives

mép concept_13

fold concept_4

(A(L){car (concept 4 L

B

Sample Problem: sort list

9271]— [1279]
(38942]~ [23489)
622385 [223568]

Solution to sort list discovered

if (AL P)(fold L nil (A(y) (nil? (concept_4 L concept_15
i 'Yy
cone (()\c(o/nsl,)z [Ul)f u()")}/)) (A(2) (> 2 ¥y \ (n (L N) (concept 13 (conc
[maximum)] L (A (LY{(> N (length(cong
g [filter] L (A (u)(> z 1))

in learned language:
(map (A (n)

[nth largest element]

(concept 15 L (+ 1 n)))
(range (length L)))

get Nth largest element,
where Nis 1, 2, 3, ...

Solution rewritten in initial primitives:

(lambda (x) (map (lambda (y) (car (fold (fold x nil (lambda (z u) (if (gt?

(+ y 1) (length
(fold x nil (lambda (v w) (if (gt?

z v) (cons v w) w))))) (cons z u) u))) nil (lambda (a b) (if
(nil? (fold (fold x nil (lambda (c d) (if (gt? (+ y 1) (length (fold x nil (lambda (e f) (if
(gt? c e) (cons e £) £))))) (cons c d) d))) nil (lambda (g h) (if (gt? g a) (cons g h) h))))
(cons a b) b))))) (range (length x))))

Library Learning

Initial Learned Library of Concepts
Primitives

map concept_13

fold concept_4 (A(L)(car (concept 4 L

if (A(y) (nil? (concept_4 L concept_15

Sample Problem: sort list

©9271—~ [1279
38942)—~ [23489]
622385 [223568)

Solution to sort list discovered

(A(z) (> 2 ¥)3))))))
cons

\ (A(L P)(fold L nil
(A(z u) (if (P 2)

(cons z u) uw))))

\

(A (L N)(concept_13 (conc

N [maximum)]

[filter] L (A (uy(>zu))))

L (A (LY{> N (length{cond

in learned language:
(map (A (n)

[nth largest element]

(concept 15 L (+ 1 n)))
(range (length L)))

get Nth largest element,
where Nis 1, 2, 3, ...

Solution rewritten in initial primitives:

(lambda (x) (map (lambda (y) (car (fold (fold x nil (lambda (z u) (if (gt? (+ y 1) (length
(fold x nil (lambda (v w) (if (gt? =z v) (cons v w) w))))) (cons z u) u))) nil (lambda (a b) (if
(nil? (fold (fold x nil (lambda (c d) (if (gt? (+ y 1) (length (fold x nil (lambda (e f) (if
(gt? c e) (cons e f) £))))) (cons ¢ d) d))) nil (lambda (g h) (if (gt? g a) (cons g h) h))))
(cons a b) b))))) (range (length x))))

induced sort program found in < 10min. Brute-force search

without learned library would take ~ 1073 years

DreamCoder

e Wake: Solve problems by writing programs

e Sleep: Improve library and neural recognition model:

e Abstraction sleep: Improve library
e Dream sleep: Improve neural recognition model

cf. Helmholtz machine, wake/sleep neural network training algorithms

Library Learning as
Bayesian inferences

dark: observed

light: unobserved

v v v

[Dechter et al, 2013] [Liang et al, 2010] [Lake et al, 2015]

Library Learning as
Bayesian inferences

dark: observed

light: unobserved

v v v

[Dechter et al, 2013] [Liang et al, 2010] [Lake et al, 2015]

Library Learning as
Bayesian inferences

dark: observed

light: unobserved

v 4 v

[Dechter et al, 2013] [Liang et al, 2010] [Lake et al, 2015]

Library Learning as neurally-guided Bayesian
inference

library learning via program analysis +
new neural inference network for program synthesis +
better program representation (Lisp+polymorphic types [Milner 1978])

Kevin Ellis et al. Library Learning for Neurally- Guided Bayesian Program Induction. In NeurlPS 2018.

WAKE

Synthesis

Train the recognition model
SLEEP: ABSTRACTION SLEEP: DREAMING

Identify re-used programs

(o)
@:%

>IS

WAKE

Library
fi(x) =@+ x 1)
fa(z) =(fold cons

(cons z nil))

[7 2 3]—7[4 3 8]
[4 3 2]—)[3 4 5]

Recognition

Neurally-Guided
Search

model

R

Programs for task:
(map fi (fold f2 nil x))

SLEEP: ABSTRACTION

SLEEP: DREAMING

WAKE

Library
filx) =(+ x 1)
fa(z) =(fold cons

(cons z nil))

[7 2 3]—)[4 3 8]
[4 3 2]—(3 4 5]

|

Recognition

Neurally-Guided
Search

model

~ER

Programs for task:
(map fi1 (fold fo nil x))

SLEEP: ABSTRACTION

SLEEP: DREAMING

Fantasies ~ Replays

Library progs. for task

9)dwes
9)dwes

program program

Train recognition model

run
program ————p» task

Loss

- FE

WAKE

Library
filx) =(+ x 1)
fa(z) =(fold cons

(cons z nil))

[z 2 3]—»[4 3 8]
[4 3 2]—’[3 4 5)

Recognition

Neurally-Guided
Search

model

R

Programs for task:
(map fi (fold fo nil x))

SLEEP: ABSTRACTION

progs. for task 1:
(+ (car z) 1)

'

progs. for task 2:
(cons (+ 1 1))

2N
car z

Refactoring Algorithm:
version spaces

v

new Library w/ (+ x 1):

SLEEP: DREAMING

Fantasies Replays

Library progs. for task

9)dwes
a)dwes

program program

Train recognition model

run
program ———p task

Loss

- 5E

WAKE

Library

fi(x) =(+ x 1)
fa(z) =(fold cons

(cons z nil))

Programs for task:

Neurally-Guided) _ L
......... N Search (map fi (fold f2 nil x))
Recognition | ~“7 | .l
model
Task
[7 2 3104 3 8] — P _XLe3L
[4 3 213 4 5] e
SLEEP: ABSTRACTION SLEEP: DREAMING
progs. for task 1: progs. for task 2: Fantasies Replays
(+ (car z) 1) (cons (+ 1 1))
Library progs. for task
co;;;:::zi\\\\ ;f/js;:::}))
+ 1 1 car z Z -
© ©
))
program program

Refactoring Algorithm:
version spaces

v

new Library w/ (+ x 1):

!

Loss

Train recognition model

run
program ———p task

N e
S - & g‘;
AN

v, S

o N3

Program Induction and learning to learn
earning a DSL

earning to synthesize
synergy between DSL+learned synthesizer

Abstraction Sleep: Growing the library via refactoring

Task: [1 2 3]—[2 4 6] Task: [1 2 3]—([0 1 2]
Double [4 3 4]1—[8 6 8] Decrement [4 3 4]—[3 2 3]
Wake: program search Wake: program search
Y \ 4

(Y (A (r 1) (if (nil? 1) nil (Y (A (r 1) (if (nil? 1) nil
(cons (+ (car 1) (car 1)) (cons (- (car 1) 1)
(r (cdr 1)))))) (r (cdr 1))))))

Abstraction Sleep: Growing the library via refactoring

Task: [1 2 3]1—=[2 4 6] Task: [1 2 3]—=([0 1 2]
[4 3 4]1—([8 6 8] [4 3 4]1—([3 2 3]

[[
Wake: program search Wake: program search

Y Y
(Y (A (r 1) (if (nil? 1) nil ((Y (A (r 1) (if (nil? 1) nil}
(cons (+ (car 1) (car 1)) (cons (- (car 1) 1)

these 104 refactorings represented in exponentially

more efficient refactoring data structure:
equivalence graphs-+version spaces using 10° nodes, |
calculated in under 5min

c.f. [Tate et al 2009], [Gulwani 2012]

Y ¥
(A (2) (+ z 2))) (A () (- z 1))

[MAP]= (A (£) (Y (A (r 1) (if (nil? 1) nil

(cons (f (car 1))
(r (cdr 1))))))

. J

Program Induction and learning to learn
earning a DSL

earning to synthesize
synergy between DSL+learned synthesizer

WAKE

Library

fi1(x) =(+ 1)

(cons z nil))

Task
[7 2 3]—[4 3 8
[4 3 2]—[3 5]

f. X
fa(z) =(fold csns\A

Recognition

Neurally-Guided
Search

Programs for task:
(map fi (fold f2 nil x))

SLEEP: ABSTRACTION

progs. for task 1:

(+ (car z) 1) (cons (+ 1 1))

' N

1 car z

l ;

Refactoring Algorithm:
version spaces

v

new Library w/ (+ x 1):

progs. for task 2:

SLEEP: DREAMING

Fantasies Replays
Library progs. for task
& &
3 3
B S
[} m
program program

Train recognition model

program — " task

Loss </

Neural recognition model guides search

task —» — program

\/
\

/

S’ ~ sample
task —>%;§:—> distribution ~—~—9 program

e

. IS a...
recurrent network (Devlin et al 2017)
unigram model (Menon et al 2013; Balog et al 2016)

W7

Neural recognition model guides search

task —>§§§E—> program

e ~ sample
task ﬁ%%:—b distribution ~~¥9 program

FE

Is a “bigram” model over syntax trees

—ar® ~ sample
task —» . :%:—b distribution ~~9 program

P(child|parent,arg)

Program Induction and learning to learn
earning a DSL

earning to synthesize
synergy between DSL+learned synthesizer

DreamCoder Domains

List Processing Text Editing Regexes LOGO Graphics
Sum List Abbreviate Phone numbers
|-
[1 2 3] — 6 Allen lf‘ewell—’A-N- (555) 867-5309 O &
[4 6 81]— 17 Herb Simon —H.S. (650) 555-2368
Double Drop Last Three Currency @
[1 2 3] =+ [2 4 6] shrdlu — shr $100.25 Q/
[4 5 1] — [8 10 2] shakey — sha $4.50
Block Towers Symbolic Regression Recursive Physical Laws
Programming . 1 -
a = — E F7
Filter Red m -
(MEEEE] — [HN] ’
(MEEEEN] —» EEEN]| _,
[(MEEEN] — [EHEN] F X 4192 7
2
7"

LOGO Turtle Graphics

30 out of 160 tasks

= rO0@v e o=

LOGO Turtle Graphics — learning an interpretable library

@

‘:, ” 2y wi) BE (fn8 5 (fnd (* € 2) » €))

. jO / conen N\ Dl:]

€)1l € x))) ﬁ
" , , /{ miz:) (for 7 (A (x) (fn9 x)))

s pLoa o (A(x) (18 ¢ e .
g le - ~ \xJ A e - \ /7
e ~ . e 31 e o
na (") = e rrptds

v Jo@

(move 0 (fnO 7)); Tr1
(fnl3 4)

LOGO Turtle Graphics — learning an interpretable library

2n

for

mnove

pen-up

fn
2m) : Repeatedly draws
and rotates
T . (A(x y) (fn] @@
(fn® x) x y))
fn2 (fn8 5 (Tnd (* € 2) o €))
(fo P“
Ly ﬂ\~ r ((€)) fn16 ;]
/ . J
‘ ™ - : >)
= C 3 (A(x) fnl > (for 7 (A (x) (Tn9 x)))
_——"— ol - (move @
\ o d (A(x) (fnig ‘.'. T
fn4 _ * €«)) RN o \\ /I
\\) gftevicircles R
Dr \\
(A(x y 2) s cC ’ oA
spirals " ‘
(for y (A (u) (move (fn8 6 (fn7 ; fn5 ;
fn7 3 fn5
(* z u) x)))) C) E| n7 ; fn5))
. | cles >
::]‘() <:) //’ \\\
ey) (move 0 (fn® 7)); fn5 ;
£n7 // (fnl3 4)
(pen-up

(move 1 8))

LOGO Turtle Graphics — learning an interpretable library

fne

radial symmetry(n, body)

\
get \] \\,
T T T AT TN T LAY (fn8 5 (fnd (* € 2) © €))
2n
a1l
fnlé
fo k) Tnl2:) (for 7 (A (x) (fn9 x)))
move — — flower pe o \\ /I
———=
‘ /A
X (fn8 6 (fn7 ; fn5 ;
fn7 3 fn5))
(mo 1
€ Ll ’7
for
per - (move 0 (fnd 7)); tnd5 ;
n

(fnl3 4)

LOGO Turtle Graphics — learning an interpretable library

YETTTR 2. @
(X) x ¥)) 116 /€ 2) €)
— \

| araws o (fn8 5 (Tnd (* € 2) o €))
(ot s Yoo ow e m)OO [we o Y Al

fnlé

=D
(1

) (for 7 (A (x) (Tn9 x)))

no
A (% f w (X (y \
f \
| (move x ¢) o) O -
nmove ¢ ¢)) £
- g f
—
n \

LOGO Turtle Graphics — learning an interpretable library

(ocpen @@

get/set | » (Rove 8 23)2) Y, Libra’rms L eeRe)
, JO - Representation of-the Symbollc : (fnS 5 (T4 (* € 2) = €)}
~ Knowledge of the Co[% domain ;" e 3l
A ' | knOWIedge))./' 3 (AMx) fnl2 \-, (for 7 (A (x) (fn9 x)))
| - It is alsobuilding statistical N
' Knowledge bw problems and e | 7 - \-: :-/ -
"-Probability Distriputions. «C c
LEI—- Embedded in the weights of the NN a7 3 fnsry |
ik 00O '
pen-up { (6 &) (move 0 (fn® 7)); fi

(fn13 4)

What does DreamCoder dream of? (before learning)

What does DreamCoder dream of? (after learning)

Learning dynamics

Tower building

100 A
80 A
60 -
40 -
20 A

Bootstrapping action

% Test Solved

Wake/Sleep Cycles

Learning dynamics

Tower building

© 100+ = full model
> _
S 801 no abstraction
N | .
o 60 === N0 dreaming
& 40 1

20 -
® 0 —r+—r+r—rrr—rrrrrrrr—rrr

0 = 10 15

Wake/Sleep Cycles

Learning dynamics

Tower building

© 1001 = full model

% 80 1 no abstraction

§ i‘;: === no dreaming

g === EC baseline

& 20 - = = neural synthesis baseline
0 o 5 10 ' 15 =mmm cnumeration baseline

Wake/Sleep Cycles

baselines: Exploration-Compression, EC [Dechter et al. 2013]
neural program synthesis, RobustFill [Devlin et al. 2017]
24 hours of brute-force enumeration

Learning dynamics

% Test Solved % Test Solved

% Test Solved

100

Text editing

B R R K e R B B L B B e K L B M e B R R K

0 5 10
Tower building

Trrrrrrrrrrrrrrrrrrr

0 5 10 15
List processing

10 15
Wake/Sleep Cycles

LOGO Graphics

Ol'll'lllllllI'I"l'l

0 5 10 15
Generative text modeling

10 15
Wake/Sleep Cycles

full model

no abstraction

no dreaming

EC baseline

neural synthesis baseline
enumeration baseline

Synergy between recognition model and library learning

Problem-solving

Lt Recognition

model

Synergy between recognition model and library learning

Problem-solving

Recognition

Library Trains model
(Dreaming)

From learning libraries,
to learning languages

modern functional programming — physics

From learning libraries,
to learning languages

1950’s Lisp — modern functional programming — physics

Growing languages for vector algebra and physics

Initial , Learned Library of Concepts Physics Equations
Primitives \ ui—v

subtract vectors -/ z vy . Newton’s Second Law Parallel Resistors
mp [@+d : 1 : 14,7

add many vectors - $
T add vectors a=_—2.F0 Reorar = (Zi R;)
zip m i \ i
| |#)? | ————— (scale-vector(reciprocal m) (reciprocal (sum-components
cons | 5 '\’. ab ' (add-many-vectors Fs)) (map (A(r) (reciprocal r}))
—_— . @E Rs)))
empty 3 '
| av ab/lv|*2 . :
v g abb ' Work Force in a Magnetic
cdr AR =3 s i
) R U=F-.d Faeis
power ‘ 2) ’_ ed inverse square (dot-product F d) |F] = ql|? x B|
ab/2 square root (* q (ab-cd v_x by v_y b _x))
fold “
Za @ .,
—_ =t*+bt+c Kinetic E '
car h L2 _ inetic Energy Coulomb’s Law
. | S
- 2a/b a/2t"2+bt+c KE = —771|1-7|£ F o q1 9z .
2 -___-lz 112

2 7

- ‘ Z."’UJ i - (ab/2 m (|v]*2 v)) ‘ _
i i _\[L < j V,«m | (inverse-square q_1 q_2

(subtract-vectors r_1 r_2))
sum components

/ r : dot product period (A (x y z u) (map (A (v) (* (/
| ab=cd (* (power (/ (* x x) (fold (zip
) ab-cd zu (A (wa) (-wa) o (b
——) (+(*bb) N /(1
1 i 1) (+ 1 1))) y) (fold (zip z u | Solution to Coulomb’s
¥ (A (de) (-de))) O (r(fg) | Law if expressed in
m reciprocal (+ (* f 1) g)))) v)) (zipzu initial primitives
: (A {(h i) (- hi)))))

Lessons

Library learning interacts synergistically with neural synthesis:
bootstrapping, more than sum of parts

Symbols aren’t necessarily interpretable. Grow the language based
on experience to make it more powerful and more human
understandable

Learning-from-scratch is possible in principle. Don't do it. But
program induction makes it convenient to build in what we know
how to build in, and then learn on top of that

end.

WAKE

Library
fi(x) =(+ x 1)
f2(z) =(fold cons

(cons z nil))

[z 2 3]—’[4 3 8]
[4 3 2]—>[3 4 5)

Recognition

Neurally-Guided
Search

model

R

Programs for task:
(map fi1 (fold fo nil x))

SLEEP: ABSTRACTION

progs. for task 1.
(+ (car z) 1)

'

(cons (+ 1

progs. for task 2:

2N
car z2

Refactoring Algorithm:
version spaces

v

new Library w/ (+ x 1):

1))

SLEEP: DREAMING

Fantasies Replays

Library progs. for task

9)dwes
9)dwes

program program

Train recognition model

program ——» task

Loss

N Yo e
‘s_*
g

S

Logistical
e Next week mid-progress meeting for the projects.

e Re-scheduling Fridays class.

e New-paper

