
Quantitative Reasoning and a 
Bayesian View of Synthesis

with inputs on slides from Armando Solar-Lezama



Bayes Theorem

𝑃(𝐴  |  𝐵) =
𝑃(𝐵  |  𝐴)𝑃(𝐴)

𝑃(𝐵)

  𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵  |  𝐴)𝑃(𝐴) = 𝑃(𝐴  |  𝐵)𝑃(𝐵)



Programming by Example

• Problem is hopelessly underspecified

• Many semantically distinct programs can satisfy the examples

 𝑓𝑖𝑛𝑖 𝑜𝑢𝑡𝑖

[ ](𝑖𝑛0, 𝑜𝑢𝑡0), (𝑖𝑛1, 𝑜𝑢𝑡1),  …(𝑖𝑛𝑘, 𝑜𝑢𝑡𝑘)



Bayesian View of PBE

𝑃(𝑓  |  𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) =
𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓)𝑃(𝑓)

𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒)

I/O Examples

Background 
Prob/Prior 

For our purpose of finding an optimal f, we can ignore P(evidence) in the denominator

P(evidence) != 0



Bayesian View of PBE

• Find the best  given the evidence𝑓

𝑃(𝑓  |  𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) =
𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓)𝑃(𝑓)

𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒)

  

                                               

argmax
𝑓

𝑃(𝑓  |  𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒) = argmax
𝑓

 
𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓)𝑃(𝑓)

𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒)
= argmax

𝑓
 𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓)𝑃(𝑓)

WARNING:  better not be zero!𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒)



𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓)
• Perfectly captured I/O examples 


•
• With a uniform  this reduces to finding any function that works

𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓 ) = 𝑃([(𝑖𝑛𝑖, 𝑜𝑢𝑡𝑖)]𝑖
  |  𝑓) = {1/𝑧 ∀𝑖 𝑓(𝑖𝑛𝑖) = 𝑜𝑢𝑡𝑖

0 𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
𝑃(𝑓)

 is a normalization constant, 
crucial for making sure these are 

probabilities, but unimportant from 
the point of view of optimiziation. 

𝑧



𝑃(𝑓)

• So far we have been using a uniform 

•

• Shortest programs are better than longer programs


•
• Could we learn ?

𝑃

𝑃(𝑓) = {1/𝑍 𝑖𝑓 𝑓 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡h𝑒 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠
0 𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒

𝑃(𝑓) = {
1
𝑍 ∗ 𝑒−𝑙𝑒𝑛(𝑓) 𝑖𝑓 𝑓 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡h𝑒 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠

0 𝑜𝑡h𝑒𝑟𝑤𝑖𝑠𝑒
𝑃(𝑓)



Programming by Example

• Problem is hopelessly underspecified

• Many semantically distinct programs can satisfy the examples


• 𝑃(𝑓  [(𝑖𝑛𝑖, 𝑜𝑢𝑡𝑖)]𝑖
) ≈ 𝑃𝑓(𝑓) ∗ 𝑃𝑖𝑜([(𝑖𝑛𝑖, 𝑜𝑢𝑡𝑖)]𝑖

   𝑓 )

 𝑓𝑖𝑛𝑖 𝑜𝑢𝑡𝑖

[ ](𝑖𝑛0, 𝑜𝑢𝑡0), (𝑖𝑛1, 𝑜𝑢𝑡1),  …(𝑖𝑛𝑘, 𝑜𝑢𝑡𝑘)



 for Synthesis 
under errors
𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓)

• Imperfectly captured independent I/O examples 


• )

• For the purposes of maximizing  ,  can be ignored if all inputs are 
equally likely

𝑃(𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  |  𝑓 ) = 𝑃([(𝑖𝑛𝑖, 𝑜𝑢𝑡𝑖)]𝑖
  |  𝑓) = ∏𝑖

𝑃𝑜|𝑧(𝑜𝑢𝑡𝑖   𝑓,  𝑖𝑛𝑖)𝑃 (𝑖𝑛𝑖)
𝑃 (𝑓 ) 𝑃 (𝑖𝑛𝑖)



Learning from noisy data

• Need to trade off quality of  against faithfulness to data

• This requires an error model


•

𝑓

𝑃(𝑓  [(𝑖𝑛𝑖, 𝑜𝑢𝑡𝑖)]𝑖
) ≈ 𝑃𝑓(𝑓) ∗ ∏𝑖

𝑃𝑜|𝑧(𝑜𝑢𝑡𝑖   𝑓,  𝑖𝑛𝑖)

 𝑓𝑖𝑛𝑖 𝑧𝑖

[ ](𝑖𝑛0, 𝑜𝑢𝑡0), (𝑖𝑛1, 𝑜𝑢𝑡1),  …(𝑖𝑛𝑘, 𝑜𝑢𝑡𝑘)



Example: Off-by-one Errors

• Suppose we know off-by-one errors are possible in the data


•

• If  is uniform, this reduces to 

• “Discard programs that are more than one-off on any input”

• “From the remaining programs, select the one that matches the most 

examples” 

𝑃𝑜|𝑧(𝑜𝑢𝑡𝑖   𝑓,  𝑖𝑛𝑖) =
0 . 5 𝑓(𝑖𝑛𝑖) = 𝑜𝑢𝑡𝑖
0.25 𝑓(𝑖𝑛𝑖) = 𝑜𝑢𝑡𝑖 ± 1

0 𝑒𝑙𝑠𝑒
𝑝(𝑓)



Off-by-one Errors

• Suppose we know off-by-one errors are possible in the data

• but others are possible as well.


•
𝑃𝑜|𝑧(𝑜𝑢𝑡𝑖   𝑓,  𝑖𝑛𝑖) =

1
𝑍 0 . 5 𝑓(𝑖𝑛𝑖) = 𝑜𝑢𝑡𝑖
1
𝑧 0.25 𝑓(𝑖𝑛𝑖) = 𝑜𝑢𝑡𝑖 ± 1

𝜖 𝑒𝑙𝑠𝑒



Non-uniform 𝑃(𝑓)

• Trade off  against 
• A solution that misses more outputs may still be preferable if it has 

much higher probability

𝑃𝑜|𝑧(𝑜𝑢𝑡𝑖   𝑓,  𝑖𝑛𝑖) 𝑃(𝑓)



Learning to Infer Graphics 
Programs from Hand-Drawn 
Images
Kevin Ellis, Daniel Ritchie, Josh Tenenbaum

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, Josh Tenenbaum, Learning to Infer Graphics Programs from Hand-Drawn Images, 2018

https://proceedings.neurips.cc/paper/2018/file/6788076842014c83cedadbe6b0ba0314-Paper.pdf




From images to programs

Hand Drawn Figure

NN + Search

Description of  
elements in the drawing

Synthesis

Program representation  
of drawing



Why? Correcting errors in perception



Unsupervised learning

• This is hopelessly underspecified

• Can we identify the process that generated the sequence?

 𝑓𝑖𝑛𝑖 𝑜𝑢𝑡𝑖

[ ]𝑜𝑢𝑡0,  𝑜𝑢𝑡1,  …, 𝑜𝑢𝑡𝑘

Kevin Ellis, Armando Solar-Lezama, Joshua B. Tenenbaum, Unsupervised Learning by Program Synthesis, 2015

http://papers.nips.cc/paper/5785-unsupervised-learning-by-program-synthesis


Unsupervized learning

𝑃(𝑓,  [𝑖𝑛𝑖]  |  [𝑜𝑢𝑡𝑖]) =
𝑃([𝑜𝑢𝑡𝑖]  |  𝑓, [𝑖𝑛𝑖])𝑃 (𝑓, [𝑖𝑛𝑖])

𝑃 ([𝑜𝑢𝑡𝑖])

 𝑃([𝑜𝑢𝑡𝑖]  |  𝑓, [𝑖𝑛𝑖]) = Π𝑖 𝑃(𝑜𝑢𝑡𝑖  |  𝑓,  𝑖𝑛𝑖)Assuming independence:

𝑃(𝑓, [𝑖𝑛𝑖]) = 𝑃(𝑓) ∗ Π𝑖 𝑃(𝑖𝑛𝑖)



Unsupervised learning

• This is hopelessly underspecified

• Can we identify the process that generated the sequence?


• 𝑃(𝑓,  [𝑖𝑛𝑖]𝑖 [𝑜𝑢𝑡𝑖]𝑖
) ≈ 𝑃𝑓(𝑓) ∗ ∏𝑖

𝑃𝑜|𝑧(𝑜𝑢𝑡𝑖   𝑓, 𝑖𝑛𝑖) ∗ 𝑃𝑖𝑛(𝑖𝑛𝑖)

 𝑓𝑖𝑛𝑖 𝑜𝑢𝑡𝑖

[ ]𝑜𝑢𝑡0,  𝑜𝑢𝑡1,  …, 𝑜𝑢𝑡𝑘



To marginalize or not to Marginalize

• Which of the two functions above should you be optimizing?

• Formulation on the left is easier to solve for


• especially with symbolic methods

 

Probability that a given function and inputs were the 
cause for an observed series of outputs

𝑃(𝑓,  [𝑖𝑛𝑖]𝑖 [𝑜𝑢𝑡𝑖]𝑖
) 

Probability that a given function is consistent with the 
observed outputs

∑
[𝑖𝑛𝑖]𝑖

𝑃(𝑓,  [𝑖𝑛𝑖]𝑖 [𝑜𝑢𝑡𝑖]𝑖
)𝑃 ([𝑖𝑛𝑖]𝑖

) 



Maximum Likelihood vs Sampling

• Often your goal is to find the most likely 

•

• For some situations, sampling from  is better

• The most likely is not necessarily the one you want

• E.g. in PBE the function the user has in mind may not be the “best”

𝑓
max

𝑓
𝑃𝑓(𝑓  …)

𝑃𝑓(𝑓  …)

Inversion, Rejection, Relationship and Approximation



Isn’t there a whole field 
looking into this?

• Machine learning has been studying these problems for a while


• What we bring to the table:

• Flexible spaces of functions 

• Complex distributions

• Powerful symbolic search techniques



Machine Learning for 
Synthesis

• DeepCoder : Learning to Write Programs, 

• Balog et al. ICLR 2017


• DreamCoder : Bootstrapping Inductive Program Synthesis with 
Wake-Sleep Library Learning.


• Ellis et al. PLDI 2021


•



Kevin Ellis et al. DreamCoder: bootstrapping inductive program synthesis with wake-sleep library learning. 
PLDI 21



Whats happening here?

Sorting: This core feature of

 Humans is hard for ML 

Combine ML techniques with 

Abstration Learning



Program Synthesis (Inductive 
Program Synthesis)

Assumed this is given



Library Learning



Library Learning



Library Learning



Library Learning



Library Learning



Library Learning



Library Learning



Library Learning



Library Learning



Library Learning



DreamCoder



Library Learning as 
Bayesian inferences 



Library Learning as 
Bayesian inferences 



Library Learning as 
Bayesian inferences 



Library Learning as neurally-guided Bayesian 
inference

Kevin Ellis et al. Library Learning for Neurally- Guided Bayesian Program Induction. In NeurIPS 2018.





Train the recognition model

Synthesis

Identify re-used programs













Abstraction Sleep: Growing the library via refactoring
Double Decrement



Abstraction Sleep: Growing the library via refactoring







Neural recognition model guides search



Neural recognition model guides search





DreamCoder Domains



LOGO Turtle Graphics



LOGO Turtle Graphics – learning an interpretable library



LOGO Turtle Graphics – learning an interpretable library



LOGO Turtle Graphics – learning an interpretable library



LOGO Turtle Graphics – learning an interpretable library



LOGO Turtle Graphics – learning an interpretable library

Libraries it learns:

  - Representation of the Symbolic 
Knowledge or the Core domain 
knowledge 

  - It is also building statistical 
Knowledge bw problems and 
Probability Distributions.

- Embedded in the weights of the NN



What does DreamCoder dream of? (before learning)



What does DreamCoder dream of? (after learning)



Learning dynamics

Bootstrapping action



Learning dynamics



Learning dynamics



Learning dynamics



Synergy between recognition model and library learning



Synergy between recognition model and library learning







Growing languages for vector algebra and physics



Lessons



end.



Logistical
• Next week mid-progress meeting for the projects.


• Re-scheduling Fridays class.


• New-paper


